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Abstract

In this work, our aim was to study the available technologies and toolchains for generating hardware
accelerators automatically, ideally without the developer’s intervention. We searched for a solution to
minimize the hardware knowledge required to produce such an accelerator under normal circumstances.
The main purpose of this project was to critically analyze the use of a framework (or toolchain) for
generating hardware accelerators automatically, or almost.
As an example, we chose to target a Machine Learning accelerator that classifies hand-written digits.

As a first step, we listed all available technologies and compared them among several criteria such
as their update frequency, their supported inputs and outputs. From this list, we reviewed each of the
frameworks and HeteroCL was found to be the most interesting one to use it for the rest of this project.
We then described the Machine Learning model that we used for the classification task. Then, we
presented how to use HeteroCL and critically discussed its flaws and qualities.

Finally, we compared the resulting output of HeteroCL with other available solutions. The first solution
was a software solution running on a CPU. The second solution was an hardware SystemVerilog module
developed by a human. The third solution was the hardware accelerator generated with HeteroCL. The
fourth and final solution was also the HLS code generated with the framework, but this time combined
with manually code transformations.

We showed that out of the four solutions, the human-developed hardware accelerator offered the best
performances. It could achieve inference in about 1 milliseconds where the software solution could do it
in 7.386 milliseconds. The solutions generated with HeteroCL were less performant. The version that
had been optimized with manual code transformations could perform inference in 10.858 milliseconds,
and the unoptimized one in 37.866 milliseconds.

In conclusion, despite their novelty, technologies for automatically generating hardware accelerators
already offer acceptable performances. They could evolve for the best in the near future and propose
generated hardware solutions that compete with software and human-developed hardware solutions.
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Introduction

1 Introduction

Modern computational problems require a growing amount of computational power, thus increasing the
electrical power consumption. Nowadays, Information and Communications Technologies (ICT) represent
about 8% of global electricity usage and could consume up to 20% of global electricity by 2025 [1].
A famous modern computing application includes Artificial Neural Networks (ANNs). These computing
systems are vaguely inspired by the biological Neural Networks that constitute animal brains. An Artificial
Neural Network is based on a collection of connected units or nodes called artificial neurons, which loosely
model the neurons in a biological brain. Neurons can communicate with each other through connections that
deliver signals, similarly to the synapses of a biological brain. An artificial neuron receiving a signal can then
process it and further signal the neurons connected to it.
Globally, those networks can therefore serve to model complex patterns and prediction problems, given specific
input information.
Recent research has showed Artificial Neural Networks capability to perform successfully well in several domains
among which biology [2], image processing [3], self-driving cars [4] and many others. Most of modern NN
architectures include convolutional layers and thus are called Convolutional Neural Networks (CNNs). These
CNNs are specialized in analyzing visual imagery. Furthermore, there is an important need of deploying CNNs
on embedded systems and mobile devices for applications such as autonomous cars [4] and medical devices
[5], [6], which demand real-time and high-accuracy object recognition.
Convolutional Neural Networks, and more generally Artificial Neural Networks, consume a lot of power and
require high computational loads. However, embedded systems and mobile devices usually are limited in terms
of resources. They often use a battery rather than being plugged into a power source. Moreover, they are
equipped with a low-power, low-frequency processor. Finally, they commonly embeds small memory amount.
These limitations make the use of embedded systems for Artificial Neural Networks implementation quite
difficult.
In order to reduce power consumption and accelerate computational loads, an approach could be to use
specific hardware. Two possible accelerators are Graphics Processing Units (GPUs) and Field-Programmable
Gate Arrays (FPGAs), which can often achieve better performance than Central Processing Units (CPUs) on
certain workloads [7], [8], [9], [10]. GPUs are designed to perform floating-point operations and run software
while FPGAs are integrated circuits that can be customized for a specific application. Since hardware is faster
and more power-efficient than software for specific applications, FPGAs are generally a better choice than
GPUs [7], [11]. Additionally, FPGAs offer true parallel processing, unlike CPUs and GPUs, and high-speed
data processing.
However, hardware programming, and more specifically FPGA programming, is less user-friendly and more
unwieldy than software programming. It necessitates advanced knowledge in Hardware Description Languages
(HDLs), such as VHDL or SystemVerilog, as well as knowing precisely the target FPGA development board
architecture. Moreover, hardware programming requires specialized tools (e.g. Xilinx’s Vivado Design Suite
[12], Intel’s Quartus Prime [13]). Finally, developing hardware accelerators requires the developer to know
perfectly the target of the accelerator and its application.
These limitations can be discouraging thus limiting the development of hardware accelerators for modern
computing problems, like Artificial Neural Networks.

1.1 Aim and objectives

In this work, our aim is to study the available technologies and toolchains for generating hardware accelerators
automatically, ideally without the developer’s intervention. We are looking for a solution that seeks to reduce
or even – ideally – eliminate the hardware knowledge required to produce such an accelerator under normal
circumstances.
The main purpose of this project is to critically analyze the use of a framework (or toolchain) for generating
hardware accelerators automatically, or almost. This critic will discuss the ease of use and the performances
in terms of resources utilization and time.
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These performances will be compared among:
• A solution running on a CPU
• A solution developed by a – human – programmer, with a HDL
• A solution generated with the framework
• The same solution as above, but optimized with code transformations manually applied after generation

As a testbench, the idea was to create an FPGA-based system which consists of acquiring image data from
a camera connected to an FPGA board and streaming out the data through an High-Definition Multimedia
Interface (HDMI) port, also present on the board.
The data passes through a Machine Learning module which performs hand-written digits recognition. This
module was generated by a solution chosen among different frameworks. These several frameworks are
presented later in the state of the art section, at the end of which we discuss which framework is the best
candidate for this work and why. The system is described in details in subsection 1.2.
Once the hardware system had been set up, we were able create and include the Machine Learning hardware
accelerator that performs hand-written digits recognition.
In order to find the framework that best met our needs and to then integrate the results, we followed the
subsequent workflow:

1. Review existing frameworks
We first reviewed frameworks that allow to create an hardware accelerator from an high-level program-
ming language (e.g. Python) to an Hardware Description Language (e.g. VHDL, SystemVerilog). Out
of all the framework, one was chosen as the best candidate and was then used for the rest of this project.

2. Define, train and test a Machine Learning model
Before synthesizing the model into an accelerator, we defined the model used to perform hand-written
digits recognition. Once we defined its architecture, we then had to prepare the training data and train
the model. Finally, we tested its accuracy.

3. Use the framework
The framework previously chosen in point 1. to generate an hardware accelerator of the model described
in point 2. Every step is presented and documented. We completed this step with a critical analysis of
the framework’s generated code and utilization.

4. Manual optimizations
Some optimizations were added manually to the generated accelerator, to see what tradeoffs could be
reached. This resulted in a newly optimized version of the accelerator that had to be compared with
the other solutions.

5. Analyze results
The performance of the generated accelerator was then compared with the other solutions. The compar-
ison was performed between a solution running on a CPU, a solution developed by a human programmer
using an HDL and finally, the solution generated by the framework, and finally the solution with manual
optimizations applied after-hand.

6. Conclude
We highlighted the different outcomes of this project, while presenting the possible future works that
can follow.

1.2 System description

This subsection explains how the system, which was used as a testbench for the accelerator generated later
in this work, has been put in place.
For acquiring image data, the Pcam 5C module [14] is used. It embeds the Omnivision OV5640 5 MP
color image sensor [15]. Data is transferred over a dual-lane MIPI CSI-2 interface and offers common video
streaming formats such as 1080p at 30 frames per second and 720p at 60 frames per second. The camera
module is connected to the FPGA board via a 15-pin Flat-Flexible Cable (FFC) which is pin-compatible with
a Pcam connector.
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Initially, we tried to deploy the system on a Xilinx Zynq-7000 SoC ZC702 Evaluation Kit [16]. Since the
ZC702 board doesn’t have a Pcam connector, we had to interface the camera module to the board by using
a FMC Pcam adapter [17]. However, we had so many problems for communicating with the camera module
from the board – in particular with the Inter-Integrated Circuit (I2C) protocol – that we preferred to change
the development board for a Zybo Z7-20 [18].
The reason for this change was that Digilent, the Pcam 5C module constructor, made a demonstration project
available online [19]. This project targets the Zybo Z7-20 as the FPGA development board. The board’s
main features are presented in Appendix A.
Once data is successfully streamed from the camera module, the data must be stored into the board’s Syn-
chronous Dynamic Random Access Memory (SDRAM). To do so, we use a Video Direct Memory Access
(VDMA) [20]. It provides high-bandwidth direct memory access between the board’s SDRAM memory and
its peripherals, such as the Pcam 5C camera module. With the VDMA set up, we simply have to stream out
the data to the HDMI port.

Figure 1: Block design of the testbench system.
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2 State of the art

This section reviews existing frameworks that aim at translating a Machine Learning model to synthesizable
hardware. This corresponds to the first objective of this project.
This review also serves as a state of the art, since it describes the most recent state in the development of
this technology.
The most interesting candidate among those frameworks was chosen and used for the rest of this project.
For each tool, a small description as well as the tool’s objectives are presented and the following criteria are
evaluated:

1. Maintenance and Update frequency
It is important to know if the tool is under active development and who is responsible for the develop-
ment. This also allows us to know whether we can expect potential errors to be corrected quickly, and
also to have an idea of the current stage of development of the tool.

2. License
The license informs us of the conditions under which the tool may be used, distributed or modified.
This criteria is crucial in this project since we might want to modify the tool so it better suits our needs.

3. Which input(s) the tool accepts
Does it use already existing ML description framework(s) or its own? It is preferred if the framework
accepts already existing description, so it saves us the trouble to discover and learn another description
framework.

4. Which output(s) the tool targets
This criteria informs on the versatility and flexibility of the tool. More flexible tools will be easier to
use. Therefore, the more outputs a tool supports, the more will it be an interesting candidate.

5. (Optional) Additional remarks

A table summarizing this state of the art is available in subsection 2.11.

2.1 DnnWeaver 2.0

DnnWeaver is an open-source framework for accelerating Deep Neural Networks (DNNs) on FPGAs. It aims
to bridge the semantic gap between the high-level specifications of DNN models used by programmers and
FPGA acceleration [21].

Maintenance and Update frequency
DnnWeaver is maintained by a team of six developers who are part of the Georgia Institute of Technology.
The project doesn’t seem to be updated frequently. Based on its Github repository [22], some commits
occurred in April 2019 but the previous ones were made in November 2018.
The fact that the project is maintained by a scholar team probably means that they have other works besides
DnnWeaver and it is reflected on the commits history.

License
According to its website, DnnWeaver is licensed under the Apache License 2.0 [23], which requires preservation
of the copyright notice and disclaimer but allows the user of the software the freedom to use the software for
any purpose, to distribute it, to modify it and to distribute modified versions of the software, under the terms
of the license, without concerns for royalties.

Input
The programmer specifies the Deep Neural Network using Caffe format.
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Output
Given the input, the framework automatically generates the accelerator SystemVerilog code specialized for
the given network, using hand-optimized SystemVerilog templates (included in DnnWeaver).
As of January 2020, the implemented layers are Convolution, Rectified Linear Unit (ReLU), Fully Connected
Layer (InnerProduct), Pooling and Local Response Normalisation (LRN).

Remarks
The available documentation only concerns the version 1.0 of the tool, which makes it difficult to gather valid
information about the current version.
A colleague has used DnnWeaver in the past and, according to him, the framework uses a mix of Python2.7
and Python3.6, raising errors during utilization. The only way to fix this is to manually update the incompatible
files to Python3.6.
Additionally, it seems that adding an unknown FPGA to the framework as an output target requires a lot of
efforts.

2.2 FPGA Caffe

FPGA Caffe is a custom version of Caffe with FPGA kernels. The kernels use custom-precision floating-point
arithmetic to save area and improve the throughput of the kernels, while also allowing for experimentation
with different floating-point precisions and rounding for training and inference with CNNs [24].

Maintenance and Update frequency
FPGA Caffe is maintained by a team of six developers who are part of University of Toronto and University
of Guelph, both based in Ontario, Canada.
The project has not been updated since December 2017, making it quite obsolete.

License
FPGA Caffe is released under the 2-Clause BSD License [25], which allows almost unlimited freedom with the
software as long as the modified versions of the software include the same license.

Input
The programmer specifies the Deep Neural Network using Caffe format.

Output
The kernels target the Xilinx SDAccel OpenCL environment, thus only Xilinx FPGAs are supported.

Remarks
Only a few layers are implemented. There are forward and backward convolutions, forward and backward
ReLUs, forward and backward MaxPooling, and forward and backward InnerProduct.

2.3 NVDLA

The NVIDIA Deep Learning Accelerator (NVDLA) is a free and open architecture that promotes a standard
way to design Deep Learning inference accelerators [26]. With its modular architecture, NVDLA is scalable,
highly configurable and designed to simplify integration and portability. The hardware supports a wide range
of IoT devices. According to their website, all of the software, hardware and documentation will be available
on GitHub [27].
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Maintenance and Update frequency
The project is maintained by an internal team so it’s quite professional.
NVDLA is divided in two parts: software and hardware.
The hardware part (available under the hw Github repository) has not been updated since April 2018.
The software part (available under the sw Github repository) has multiple commits in September 2019 but
nothing between September 2019 and April 2019 as well as between April 2019 and August 2018 (at least
publicly).
It seems that they commit changes only when a major development milestone is released.

License
NVDLA is delivered as an open-source project under the NVIDIA Open NVDLA License [28]. This license
allows us to modify the tool as we please.

Input
The programmer specifies the Deep Neural Network using Caffe format.

Output
NVDLA supports two sample platforms: simulation and FPGA. These platforms are provided to observe,
evaluate and test NVDLA in a minimal System-on-Chip (SoC).
The simulation platform is based on GreenSocs QBox [29]. A QEMU CPU model (x86 or ARMv8) is combined
with the NVDLA SystemC model to provide a register-accurate system for quick development and debugging.
The FPGA platform provides a synthesizable example of instantiating NVDLA in a real design. The FPGA
model is intended for inference only, no effort has been made to optimize cycle time, design size, power
consumption or performance.
The FPGA platform is Xilinx-based, thus only Xilinx FPGAs are supported.

Remarks
The documentation is well-structured and precise.
The source code is quite closed yet. Commits are pushed whenever there is a major version. And even if
NVIDIA claims that the project is open-source, it seems that some code (e.g. the compiler) will not be
released. This already causes problems because, according to Toshiba [30], some errors are raised during
compilation, and we don’t have information on what is making compilation fail.
However, Open Neural Network Compiler (ONNC) [31], a retargetable compilation framework, has a NVDLA
backend that can compile a model into an executable NVDLA loadable file.
It also seems that people are having a hard time testing NVDLA on FPGAs [32].
The team seems to be quite responsive: we wrote them an email to get more information about the compiler
source code and they replied within hours.

2.4 hls4ml

hls4ml is a package for Machine Learning inference in FPGAs. It translates traditional open-source Machine
Learning models into High-Level Synthesis (HLS) language that can be configured according to the output
platform [33].

Maintenance and Update frequency
hls4ml is maintained by different people around the world. Some come from the CERN, others from MIT,
making it more of a community project than something professional.
The project was updated quite frequently, about 1 commit was made per week until September 2019. Since,
there has been no commit made. Project might be discontinued.

License
hls4ml is licensed under the Apache License 2.0 [23].
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Input
Neural Network can be specified with Keras/Tensorflow or PyTorch.

Output
Given the input, the framework generates an HLS project that can be used to produce an IP core which can
be plugged into more complex designs or be used to create a kernel for CPU co-processing.
As of January 2020, only Multi-Layer Perceptron (MLP) and Conv1D and Conv2D architectures are supported.

Remarks
Unfortunately, the project is not well-documented.

2.5 TVM

TVM is an open deep learning compiler stack for CPUs, GPUs and specialized accelerators (FPGAs). It
aims to close the gap between the productivity-focused deep learning frameworks, and the performance- or
efficiency-oriented hardware backends [34].

Maintenance and Update frequency
The TVM stack began as research project at the SAMPL group of University of Washington. The project is
now driven by an open-source community involving multiple industries and academic institutions.
The project is under active development: several commits are pushed every day.

License
The TVM stack is licensed under the Apache License 2.0 [23].

Input
Neural Network can be specified in Keras, MXNet, PyTorch, Tensorflow, CoreML and DarkNet.

Output
Given the input, TVM compiles the Deep Learning (DL) models into deployable modules on diverse hardware
backends such as CPUs, GPUs and FPGAs.

Remarks
The documentation is really exhaustive and up-to-date.
A lot of tutorials are available for every thing that TVM can achieve.
A forum is available where users can ask questions which are then rapidly answered.
Versatile Tensor Accelerator (VTA) is an extension of the TVM framework that includes drivers, a Just-in-
Time (JIT) runtime and an optimizing compiler stack. VTA offers a micro-architecture on which compiled
TVM modules can be run. Initially, only Xilinx FPGAs were supported. However, a pull request adding Intel
FPGA and Chisel support has been merged on June 5, 2019 [35].
TVM is now part of the Apache Incubator [36]. In December 2019, the “TVM and Deep Learning Compilation
Conference” [37] has been organized by Apache. A lot of talkings (e.g. Microsoft, ARM, Xilinx) are worth a
look. We believe that such an event promise a bright future for this project.
This framework has already been used in the past so we are quite comfortable with its use.

2.6 LeFlow

LeFlow is a tool that relies on LegUp [38] to map numerical computation models written in Tensorflow to
synthesizable hardware [39]. It bridges Google’s XLA compiler and LegUp high-level synthesis to automatically
generate a SystemVerilog module.
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Maintenance and Update frequency
LeFlow is maintained by three people who work at The University of British Columbia.
Even if the last update was made in February 2019, the previous one was four months before, thus we assume
that it is not frequently updated.

License
LeFlow is licensed under the MIT License [40] which has only one restriction: if the project is reused within
proprietary software, all copies of the licensed software must include a copy of the MIT License.

Input
Neural Network models must be specified with a customized version of Tensorflow.

Output
Since LeFlow relies on LegUp, it supports the output that LegUp supports. Those are Intel FPGAs.

Remarks
Documentation is inexistent.
Some simple examples are included in the repository.
The maintainer is quite responsive: we wrote him an email to better understand the project’s structure and
he replied within hours.

2.7 nGraph

nGraph is an open-source graph compiler for artificial Neural Networks. The nGraph Compiler stack provides
an inherently efficient graph-based compilation infrastructure designed to be compatible with many upcoming
integrated circuits while also unlocking a massive performance boost on any existing hardware targets [41].

Maintenance and Update frequency
nGraph is maintained by an artificial intelligence software company called Nervana Systems (acquired by Intel
in August 2016) [42].
The Github repository is updated with several commits every day [43].

License
nGraph is licensed under the Apache License 2.0 [23].

Input
As of January 2020, nGraph takes Tensorflow 1.12, MXNet 1.3 and ONNX 1.3 as inputs for model description.

Output
nGraph currently supports Intel CPUs, Intel Neural Network Processor, NVIDIA CUDA GPUs and AMD GPUs
as output.
FPGAs are set to be fully supported ”in the near future” [44].

Remarks
The documentation seems to be very qualitative.
Since the project is maintained by an Intel company, it might be possible that only Intel hardware (CPUs,
GPUs and FPGA) will be supported.
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2.8 HeteroCL

HeteroCL is a programming infrastructure composed of a Python-based Domain-Specific Language (DSL) and
a compilation flow. The HeteroCL DSL provides a clean abstraction that decouples algorithm specification
from three important types of hardware customization in compute, data types and memory architectures.

Maintenance and Update frequency
The project is maintained by a team of developers of the Cornell University.
Commits are pushed frequently on the HeteroCL Github repository [45].

License
HeteroCL is licensed under the Apache License 2.0 [23].

Input
HeteroCL takes any format as input as long as weights are loadable from the input model.

Output
Cloud (AWS), Xilinx and Intel FPGAs are supported. CPUs are also supported.

Remarks
The documentation seems to be good although not complete. We assume it will improve with future releases.
It is possible to follow development roadmap by going on their respective pull request on the HeteroCL Github
repository [45].
We already used this framework in the past so we are comfortable with its use.

2.9 ESP

Embedded Scalable Platforms (ESP) is an open-source platform for heterogeneous System-on-Chip (SoC)
design and prototype on FPGA. It provides a flexible tile-based architecture built on a multi-plane Network-
on-Chip (NoC) [46].
In addition to the architecture, ESP provides users with templates and scripts to create new accelerators
from SystemC, Chisel, and C. The ESP design methodology eases the integration process by offering platform
services (i.e. Direct Memory Access (DMA), distributed interrupt, run-time coherence selection) that hide
the complexity of hardware and software integration from the accelerator designer.

Maintenance and Update frequency
ESP is maintained by the System-Level Design group at Columbia University, led by Professor Luca P. Carloni.
Commits are pushed frequently on the project’s Github repository [47].

License
The project is licensed under the Apache License 2.0 [23].

Input
ESP takes SystemC, C and Keras Tensorflow as input.

Output
It generates FPGA accelerators as modules for the ESP micro-architecture, like TVM does.

Remarks
The documentation is not yet complete. A lot of tutorials are still missing, making it difficult to use this
project. However, since the project seems to be quite active, we believe documentation will quickly be
completed.
This framework has been put online at the beginning of January 2020, thus being too recent to be added to
the list of potential candidates for this project.
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2.10 Comparison

Among the listed existing frameworks, we based ourselves on the previously presented criteria to choose the
most suitable candidate for this project.
Among these criteria, we decided to put a higher weight on the update frequency, the supported outputs and
their reliability.
The selection will be based on several criteria: we want to focus on the update frequency and the supported
outputs. The License criterion has been put aside because every framework is under a license allowing a lot
of freedom (except maybe for NVDLA).
Also, the Supported inputs criterion has not been taken into account since input frameworks were found very
similar and switching from one to another is quite feasible.
Supported outputs
All frameworks listed above support FPGAs as an output, except for nGraph. Thus, we eliminated it from
the list of interesting candidates.
Maintenance and update frequency
FPGA Caffe has not been updated for more than a year, so it was obviously not an interesting candidate.
Unfortunately, we could not retain ESP as a candidate either, because it has been released just days before
the end of this work. But it might be a truly interesting solution to keep track of in the future.
Reliability
Because its compiler is still close-source and contains bugs, NVDLA didn’t make it to the list of interesting
candidates.
DnnWeaver 2.0 seems to be broken: some files need manual updates to be compatible with Python3.6 so it
has been pulled out of the list as well.
In one of our previous works, “FPGA-based Accelerator for Machine Learning Inference” [48], we tried to use
LeFlow to synthesize a simple Multi-Layer Perceptron without any success. Our previous tests were not very
conclusive, thus we preferred to rule out LeFlow as a possible candidate.
Produced output
This lefts us with three candidates: hls4ml, TVM and HeteroCL. hls4ml and HeteroCL are similar in the
way that they produce HLS code that can be synthesized for both Intel and Xilinx FPGAs, while TVM
produces modules that must be run on the VTA micro-architecture. This creates two groups: HLS and
Micro-architecture.
The only and thus best candidate for the Micro-architecture group is TVM. The other two candidates are
part of the HLS code group. Between HeteroCL and hls4ml, we believe that HeteroCL is the most suitable
choice because it is well-documented and it is more frequently updated than hls4ml.
Moreover, HeteroCL has already been used in the “GNU Radio OOT module for DNN activity” [49] project,
so we also are more comfortable using it.
Finally, between TVM and HeteroCL, we preferred to go with HeteroCL. Since we aim at creating an FPGA-
based system, a synthesizable module is preferred over a module that can only run with a dedicated micro-
architecture, thus eliminating TVM from the possible candidates.
The choice of HeteroCL as our chosen framework being made, we were able to move on to the second objective
of this paper: Define, train and test a Machine Learning model.
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2.11 Summary

Framework Update frequency Supported inputs Supported outputs Comments

DnnWeaver 2.0 One update every year (last in
April 2019) Caffe SystemVerilog

Obsolete documentation, some
files need to be updated
manually for the framework to
run.

FPGA Caffe Not updated since December
2017 Caffe Xilinx FPGAs None.

NVDLA One update every year (last in
April 2019) Caffe CPUs, Xilinx FPGAs

Documentation is good.
Project is relatively
open-source. Seems that
people are having a hard time
deploying on FPGAs.

hls4ml
1 commit per week until
September 2019, no commits
since

Keras, PyTorch SystemVerilog Documentation last updated a
year ago.

TVM Several commits per day Keras, MXNet, PyTorch,
Tensorflow, CoreML, DarkNet Modules for VTA micro-architecture

Good documentation with
tutorials. A forum is available
for asking questions. Project is
part of the Apache Incubator.
This framework has already
been used for past projects so
we are comfortable using it.

LeFlow Last updated in February 2019
and November 2018 Tensorflow Intel FPGAs No documentation. Some

examples are included.
nGraph Several commits per day Tensorflow, MXNet CPUs, GPUs FPGAs not supported yet.

HeteroCL Several commits per week Any as long as weights are
available HLS code

This framework has already
been used for past projects, so
we are comfortable using it.

ESP Several commits per week C, SystemC, Keras Modules for ESP micro-architecture None.

Table 1: State of the art summary.
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3 The Machine Learning model

This section describes the second objective of this project. We first describe the Machine Learning model
architecture and then present how we did prepare the dataset used for training and validating the model.

3.1 The model architecture

For this work, we chose to deploy a CNN that recognizes hand-written digits. This choice was motivated by
the fact that the second solution, which is taken from the “Fixed-Point Convolutional Neural Network for
Real-Time Video Processing in FPGA” paper, written by Solovyev, Kustov, Telpukhov, et al. [50]. This paper
was the reference for the Inference developed by a – human – developer with a HDL solution, as stated in
subsection 1.1. The Figure 2 shows its detailed architecture.
This network uses the MNIST dataset [51], which is composed of 60’000 train images and 10’000 test images.

Figure 2: CNN architecture used for describing the workflow.
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The model takes a grayscale (1 component per pixel) image of dimensions 28x28 as input. The data is then
processed by 6 convolutional layers (each activated by the ReLU function). The last layer performs a Dense
operation, which is finally activated by the Softmax function.
The output is an array of 10 values (from 0 to 9), each corresponding to the probability of being the digit in
the input image.

[
0.10118849, # 0
0.07356359, # 1
0.08777632, # 2
0.09791587, # 3
0.10229186, # 4
0.08554156, # 5
0.07353777, # 6
0.16658820, # 7 (highest probability)
0.09403618, # 8
0.11756021 # 9

]

Figure 3: Inference example.

3.2 Preparing the dataset

We then prepared the dataset that was used to train the network. The function load_mnist_data() shown
below does such a task.

src/python/train_nn.py
38 def load_mnist_data(data_format='channels_first'):
39 '''
40 Load MNIST dataset.
41

42 Parameters
43 ----------
44 data_format : str, optional
45 The data format used (default is 'channels_first')
46

47 Return
48 -------
49 train_x, train_y, test_x, test_y : array, array, array, array
50 Training images, training labels, testing images, testing labels.
51 '''
52 (train_x, train_y), (test_x, test_y) = mnist.load_data()
53

54 # Reshape data according to the specified data format
55 if (data_format is 'channels_first'):
56 train_x = train_x.reshape(train_x.shape[0], 1, IMG_H, IMG_W)
57 test_x = test_x.reshape(test_x.shape[0], 1, IMG_H, IMG_W)
58 elif (data_format is 'channels_last'):
59 train_x = train_x.reshape(train_x.shape[0], IMG_H, IMG_W, 1)
60 test_x = test_x.reshape(test_x.shape[0], IMG_H, IMG_W, 1)
61 else:
62 raise DataFormatException(data_format)
63

64 # Convert to float32
65 train_x = train_x.astype('float32')
66 test_x = test_x.astype('float32')
67

68 dbg_print('train_x.shape: {}'.format(train_x.shape))
69 dbg_print('test_x.shape : {}'.format(test_x.shape))
70

71 # Convert class vectors to binary class matrices
72 train_y = np_utils.to_categorical(train_y, 10)
73 test_y = np_utils.to_categorical(test_y, 10)
74

75 # Invert images (from white on black to black on white)
76 train_x = 255 - train_x
77 test_x = 255 - test_x
78

79 return train_x, train_y, test_x, test_y
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The line 52 loads the MNIST dataset. Train (resp. test) images are stored in the array train_x (resp.
train_y) and train (resp. test) labels (i.e. classes) are stored in the array train_x (resp. test_y).
At lines 55 to 62, we adapt the format of the dataset. Neural Networks can have different different data
layouts: NCHW or NHWC, where:

N: batch size
C: channels
H: height
W: width

Thus, if data_format is channels_first (resp. channels_last), NCHW (resp. NHWC) data layout will
be applied on the whole dataset. Otherwise, an exception is raised. Default is NCHW.
On lines 72 and 73, we convert classes to binary representation (e.g. 4 becomes 0100). This step is optional.
We apply it to have the exact same network output as the one proposed by Solovyev, Kustov, Telpukhov, et
al. [50].
Finally, lines 76 and 77 invert the MNIST colors. It is also an optional step as it depends on the data we want
to train the network with. The original images provided by the MNIST dataset are white digits written on a
black background. Such configuration is rare in real-life applications thus we decided to invert the colors on
the whole dataset. Since MNIST images have their pixels coded with 8-bit unsigned integers, we simply have
to subtract the pixel value from 255.

Figure 4: MNIST image before and after dataset preparation.

3.3 Training the network

To train the network, we used the Keras framework [52]. The first thing to do was to define and build the
whole NN architecture, as described by Solovyev, Kustov, Telpukhov, et al. [50].
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src/python/train_nn.py
81 def build_model(data_format='channels_first', use_bias=False):
82 '''
83 Define network architecture.
84

85 Parameters
86 ----------
87 data_format : str, optional
88 The data format used (default is 'channels_first').
89 use_bias : boolean, optional
90 Whether to use bias or not (default is False).
91

92 Return
93 -------
94 model : keras.models.Model
95 The Keras model of the network.
96 '''
97 # Input is 28x28 grayscale (1 component) pixels
98 if (data_format is 'channels_first'):
99 input = Input((1, IMG_H, IMG_W))

100 elif (data_format is 'channels_last'):
101 input = Input((IMG_H, IMG_W, 1))
102 else:
103 raise DataFormatException(data_format)
104

105 conv1 = Conv2D(4, (3,3), activation='relu', padding='same', data_format=data_format, name='conv1',
use_bias=use_bias)(input)↪→

106 conv2 = Conv2D(4, (3,3), activation='relu', padding='same', data_format=data_format, name='conv2',
use_bias=use_bias)(conv1)↪→

107 pool1 = MaxPooling2D((2,2), strides=(2,2), data_format=data_format, name='pool1')(conv2)
108

109 conv3 = Conv2D(8, (3,3), activation='relu', padding='same', data_format=data_format, name='conv3',
use_bias=use_bias)(pool1)↪→

110 conv4 = Conv2D(8, (3,3), activation='relu', padding='same', data_format=data_format, name='conv4',
use_bias=use_bias)(conv3)↪→

111 pool2 = MaxPooling2D((2,2), strides=(2,2), data_format=data_format, name='pool2')(conv4)
112

113 conv5 = Conv2D(16, (3,3), activation='relu', padding='same', data_format=data_format, name='conv5',
use_bias=use_bias)(pool2)↪→

114 conv6 = Conv2D(16, (3,3), activation='relu', padding='same', data_format=data_format, name='conv6',
use_bias=use_bias)(conv5)↪→

115 pool3 = GlobalMaxPooling2D(data_format=data_format, name='pool3')(conv6)
116

117 dense1 = Dense(10, activation=None, use_bias=use_bias)(pool3)
118 output = Activation('softmax')(dense1)
119

120 model = Model(inputs=input, outputs=output)
121 model.summary(print_fn=dbg_print)
122

123 return model

From line 98 to line 103, the input shape is defined accordingly to the specified data layout.
The first two blocks (lines 105 to 107 and lines 109 to 111) are each composed of two 2D-Convolutional
layers (with ReLU being the activation function for both) and a 2D-MaxPooling layer.
The third block (lines 113 to 115) is also composed of two 2D-Convolutional layers (with ReLU being the
activation function for both) but composed of a 2D-GlobalMaxPooling layer.
Finally, a Dense layer is used to connect all neurons from the previous 2D-GlobalMaxPooling layer to the
output layer. The Dense layer has the Softmax function acting as the activation function.
The execution of line 121 gives the following output:
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_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 1, 28, 28) 0
_________________________________________________________________
conv1 (Conv2D) (None, 4, 28, 28) 36
_________________________________________________________________
conv2 (Conv2D) (None, 4, 28, 28) 144
_________________________________________________________________
pool1 (MaxPooling2D) (None, 4, 14, 14) 0
_________________________________________________________________
conv3 (Conv2D) (None, 8, 14, 14) 288
_________________________________________________________________
conv4 (Conv2D) (None, 8, 14, 14) 576
_________________________________________________________________
pool2 (MaxPooling2D) (None, 8, 7, 7) 0
_________________________________________________________________
conv5 (Conv2D) (None, 16, 7, 7) 1152
_________________________________________________________________
conv6 (Conv2D) (None, 16, 7, 7) 2304
_________________________________________________________________
pool3 (GlobalMaxPooling2D) (None, 16) 0
_________________________________________________________________
dense_1 (Dense) (None, 10) 160
_________________________________________________________________
activation_1 (Activation) (None, 10) 0
=================================================================
Total params: 4,660
Trainable params: 4,660
Non-trainable params: 0
_________________________________________________________________

Figure 5: Keras model summary.
This gives us more information about the output shape of each layer and their respective number of trainable
parameters. The total count of trainable parameters included in the model is 4’660, which should easily fit in
any FPGA design or embedded Synchronous Dynamic Random Access Memory (SDRAM).
After the network definition step came the training. This was performed by the train_model() function.
We will not describe its code in details here but only describe what it does. The complete Python code is
available in Appendix B.
The train_model() function first searches for an already trained model that might have been saved into a
file named mnist_weights.h5. If this file exists, the model is loaded from there. Otherwise, the model is
trained and then saved into the same file mentioned previously.
Upon completion, the function outputs the model score and accuracy:

Model score : 0.07440621950239874
Model accuracy: 0.975600004196167
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[
1.1960877e-11, # 0
4.3369418e-13, # 1
7.8879259e-09, # 2
9.9999964e-01, # 3 (highest)
9.1875462e-16, # 4
3.9355601e-07, # 5
5.5602975e-16, # 6
3.8441872e-09, # 7
1.0099800e-09, # 8
1.9590207e-08 # 9

]

Figure 6: Model predictions for a non-MNIST image.
The last step in the network training was to rescale all the model weights. It is necessary if we want to
use fixed-point arithmetics, which should speed-up performance. In fact, when implemented at the hardware
level, floating-point calculations are slower than fixed-point calculations due to the difficulty of controlling the
mantissa and the exponent of the values.
The method used for rescaling the weights is the same as the one used by Solovyev, Kustov, Telpukhov, et al.
[50]. Basically, it consists of looking at all weights and all possible input and output values and normalizing
them. The lowest value is translated to -1.0 and the highest to 1.0.
The function rescale_weights() in the file src/python/train_nn.py takes care of rescaling the model
weights. The code is available in Appendix B.
The accuracy of the rescaled model might differ from the initial one, due to precision loss during normalization.
At this point, we had our model trained. We then moved on to actually use HeteroCL, the framework
previously selected in section 2.
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4 Using the framework

This section presents how to generate HLS code using HeteroCL, the framework chosen to be critically
analyzed in this project.
As a first step, we explain how to install HeteroCL. Then, we show how we used the framework to generate
HLS code and present some custom modifications we chose to apply to the generated HLS code. Finally, a
discussion and a critical review about the use of this framework is presented.
The explanations in this section can be very technical. It is possible to go directly to subsection 4.5 for a
critical analysis of the framework or to section 5 for the results analysis.

4.1 Installation

The HeteroCL framework is available on their Github repository [45]. However, we decided to not use the
official version but chose instead a version of the framework that we modified especially for this project.
Indeed, some operations were not available in the official source code, so we added them in our personal fork.
Before installing the framework, one must install LLVM compiler. The tool requires version 4.0, 5.0, 6.0 or
7.0.
To install HeteroCL, simply clone our modified version and install it:

git clone --recursive https://github.com/faku99/heterocl.git
cd heterocl/
make

4.2 Generating High-Level Synthesis code

This step consists of specifying to the framework the ML model we are using. Unfortunately, HeteroCL doesn’t
support loading a model from a file yet, thus we had to define the model architecture once again, but this
time using HeteroCL API instead of Keras’. Then, the weights of the trained model are loaded one by one
and given to HeteroCL for inference.

src/python/generate_hls.py
def build_mnist(input_image, w_conv1, w_conv2, w_conv3, w_conv4, w_conv5, w_conv6, w_dense1, output):

# First convolutional layer
conv1 = hlib.nn.conv2d_nchw(input_image, w_conv1, padding='SAME', name='conv1')
dbg_print(conv1)
relu1 = hlib.nn.relu(conv1, name='relu1')
dbg_print(relu1)

# Second convolutional layer
conv2 = hlib.nn.conv2d_nchw(relu1, w_conv2, padding='SAME', name='conv2')
dbg_print(conv2)
relu2 = hlib.nn.relu(conv2, name='relu2')
dbg_print(relu2)

# First max pooling
pool1 = hlib.nn.max_pool(relu2, kernel=(2,2), stride=(2,2), name='pool1')
dbg_print(pool1)

# Third convolutional layer
conv3 = hlib.nn.conv2d_nchw(pool1, w_conv3, padding='SAME', name='conv3')
dbg_print(conv3)
relu3 = hlib.nn.relu(conv3, name='relu3')
dbg_print(relu3)

# Fourth convolutional layer
conv4 = hlib.nn.conv2d_nchw(relu3, w_conv4, padding='SAME', name='conv4')
dbg_print(conv4)
relu4 = hlib.nn.relu(conv4, name='relu4')
dbg_print(relu4)

# Second max pooling
pool2 = hlib.nn.max_pool(relu4, kernel=(2,2), stride=(2,2), name='pool2')
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dbg_print(pool2)

# Fifth convolutional layer
conv5 = hlib.nn.conv2d_nchw(pool2, w_conv5, padding='SAME', name='conv5')
dbg_print(conv5)
relu5 = hlib.nn.relu(conv5, name='relu5')
dbg_print(relu5)

# Sixth convolutional layer
conv6 = hlib.nn.conv2d_nchw(relu5, w_conv6, padding='SAME', name='conv6')
dbg_print(conv6)
relu6 = hlib.nn.relu(conv6, name='relu6')
dbg_print(relu6)

# Third max pooling
pool3 = global_max_pool(relu6, name='pool3')
dbg_print(pool3)

# Output layer
dense1 = hlib.nn.dense(pool3, w_dense1, name='dense1')
dbg_print(dense1)

return hlib.nn.softmax(output, dense1)

This code does essentially the same thing as the first snippet of code in subsection 3.3. The arguments of
the build_mnist() function are the weights we obtained previously, during the training. They are needed
by HeteroCL for generating the hardware operations, which depend on the data length and type.

src/python/generate_hls.py
def build_mnist_inf(batch_size, weights, qtype1, qtype2, target=None):

# Set placeholders
input_image = hcl.placeholder((batch_size,1,IMG_H,IMG_W), name='input')
w_conv1 = hcl.placeholder( weights['conv1'].shape, name='w_conv1', dtype=qtype1)
w_conv2 = hcl.placeholder( weights['conv2'].shape, name='w_conv2', dtype=qtype1)
w_conv3 = hcl.placeholder( weights['conv3'].shape, name='w_conv3', dtype=qtype1)
w_conv4 = hcl.placeholder( weights['conv4'].shape, name='w_conv4', dtype=qtype1)
w_conv5 = hcl.placeholder( weights['conv5'].shape, name='w_conv5', dtype=qtype1)
w_conv6 = hcl.placeholder( weights['conv6'].shape, name='w_conv6', dtype=qtype1)
w_dense1 = hcl.placeholder( weights['dense_1'].shape, name='w_dense1', dtype=qtype1)
output = hcl.placeholder((batch_size,10), name='output')

# Create quantization scheme
scheme = hcl.create_scheme(

[input_image, w_conv1, w_conv2, w_conv3, w_conv4, w_conv5, w_conv6, w_dense1, output],
build_mnist

)

# Quantize activation layers
scheme.quantize(

[build_mnist.relu1, build_mnist.relu2, build_mnist.relu3, build_mnist.relu4, build_mnist.relu5,
build_mnist.relu6],↪→

qtype2
)

s = hcl.create_schedule_from_scheme(scheme)

return hcl.build(s, target=target)

The build_mnist_inf quantizes the network layers weights. It is in this particular function that we can
inform HeteroCL the fixed-point format we want to use for the data.
The qtype1 argument is the quantization type for the weights, while qtype2 is for the activation layers.
A quantization type is defined as follows:

import heterocl as hcl

qtype = hcl.Fixed(32,30)

Here, 32 corresponds to the total number of bits and 30 the number of bits used for the mantissa. Thus, 1
bit is used for the sign and 1 bit is used for the integer part (0 or 1).
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For this project, we measured the performance of the four following quantization types:

1. hcl.Fixed(32,30)

2. hcl.Fixed(16,14)

3. hcl.Fixed(8,6)

4. hcl.Fixed(4,2)

HeteroCL offers the possibility of running an hardware simulation of the model on the CPU. Table 2 shows
the accuracy for each of the quantization types:

Quantization type Accuracy
hcl.Fixed(32,30) 97.26%
hcl.Fixed(16,14) 97.28%
hcl.Fixed(8,6) 9.81%
hcl.Fixed(4,2) 9.80%

Table 2: Accuracy for each quantization types.
We observe a small loss when the model passes from using 32-bit fixed-point representation to 16-bit fixed-
point representation. However, the loss is more than acceptable (0.02%). On the contrary, the loss of
switching from the 32- or 16-bit representation to the 8-bit fixed-point representation is way more important
and is not suitable for a real-life application. We also notice that there is no loss starting from the 4-bit
fixed-point representation.
The impact on resources utilization was measured and will be discussed later.
The entirety of the source code for this subsection is available in Appendix C.
An example of generated Vivado HLS code is available in Appendix D.

4.3 Manual modifications

Depending on how data is passed to the IP, we may want to make some modifications to the previously
generated Vivado HLS code. This step is optional.
In this subsection, we will show how to include the ML model’s weights into the IP and how to accept the
input data from the AXI-Stream protocol.
The first step is to export the weights of the trained model to C/C++ arrays so that we can delete the
arguments of the Vivado HLS function. The following exports_weights function allows to export the
weights in C/C++ arrays style.

src/python/generate_hls.py
def export_weights(weights):

import os
import shutil
import sys

if (os.path.exists('weights')):
shutil.rmtree('weights')

os.mkdir('weights')

for name in weights.keys():
s = str()
data = weights[name]
s += 'const static float w_{}'.format(name)
for dim in data.shape:

s += '[{}]'.format(dim)
s += ' = \n'
s += '{}'.format(np.array2string(data, max_line_width=80, separator=',',

threshold=sys.maxsize).replace('[', '{').replace(']', '}'))↪→

s += ';'

file = open('weights/w_{}.h'.format(name), 'w')
file.write(s)
file.close()
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This function generates a file for each entry present in the weight dictionary passed as the function parameter.
The resulting C/C++ array is named w_<name>, where <name> is the dictionary key corresponding to the
weights array. The file has the same name as what will be placed into a folder named weights.
After having exported of the trained weights as C/C++ arrays, we include each header file into the Vivado
HLS code and modify the function signature.

mnist_fp32.cpp
+ #include "w_conv1.h"
+ #include "w_conv2.h"
+ #include "w_conv3.h"
+ #include "w_conv4.h"
+ #include "w_conv5.h"
+ #include "w_conv6.h"
+ #include "w_dense_1.h"

- void default_function(float input[1][1][28][28], float w_conv1[4][1][3][3], float
w_conv2[4][4][3][3], float w_conv3[8][4][3][3], float w_conv4[8][8][3][3], float
w_conv5[16][8][3][3], float w_conv6[16][16][3][3], float w_dense1[16][10], float output[1][10]) {

↪→

↪→

+ void mnist_fp32(float input[1][1][28][28], output[1][10]) {

Noticeably, we also changed the function name. The function we discuss in this subsection is the one using
32-bit fixed-point data. All the modifications made to this function can be applied to the others data formats
generated previously.
The next modification to make concerns the input protocol. At this point, the generated IP expects the
address of an array containing the input image 28x28 data. However, we wanted the IP to gather the data
from a Video Direct Memory Access (VDMA) offering AXI-Stream protocol for the reading part.
The first thing to do was to include the header files offered by Vivado for using AXI-Streams.

mnist_fp32.cpp
+ #include <hls_video.h>

Some definitions are then needed, as for the pixel’s format and the type of the elements the AXI-Stream is
composed of. Moreover, the function arguments needed to be modified.

mnist_fp32.cpp
+ typedef ap_axiu<32,1,1,1> pixel_t;
+ typedef hls::stream<pixel_t> stream_t;

- void mnist_fp32(float input[1][1][28][28], float output[1][10]) {
+ void mnist_fp32(stream_t& stream_in, output[1][10]) {

The following snippet of code is used to synchronize the AXI-Stream. It is a bit tricky, but it basically waits
for the start signal, indicating the beginning of the input image. It also waits for the end signal, which, in
turn, indicates the end of a row of the input image, thus every 28 pixels.
It also puts the data received from the AXI-Stream into a float array.

mnist_fp32.cpp
+ float image[1][1][28][28];
+ pixel_t pixel;
+ union_t uni;
+ HLS_SIZE_T i, j;
+
+ bool sof = 0;
+ loop_wait_sof: while (sof == 0) {
+ #pragma HLS LOOP_TRIPCOUNT avg=0 max=0
+ #pragma HLS PIPELINE II=1
+ stream_in >> pixel;
+ sof = pixel.user.to_int();
+ }
+
+ loop_height: for (i = 0; i < 28; ++i) {
+ bool eol = 0;
+
+ loop_width: for (j = 0; j < 28; ++j) {
+ #pragma HLS LOOP_FLATTEN off
+ #pragma HLS PIPELINE II=1
+ if (sof || eol) {
+ sof = 0;
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+ eol = pixel.last.to_int();
+ }
+ else {
+ stream_in >> pixel;
+ eol = pixel.last.to_int();
+ }
+
+ uni.u = pixel.data.to_uint();
+ image[0][0][i][j] = uni.f; // pixel.data.to_double();
+ }
+
+ loop_wait_eol: while (eol == 0) {
+ #pragma HLS PIPELINE II=1
+ #pragma HLS LOOP_TRIPCOUNT avg=0 max=0
+ stream_in >> pixel;
+ eol = pixel.last.to_int();
+ }
+ }

The last modification we made was to tell the compiler that our input uses the AXI-Stream protocol. This
can be made by adding a pragma to the code.

mnist_fp32.cpp
+ #pragma HLS INTERFACE axis port=stream_in

After all those custom modifications were made, we compiled the Vivado HLS code and moved on to critically
discuss the use of the HeteroCL framework.

4.4 Code analysis

This subsection presents a critic analysis about the quality of the HLS code generated by the HeteroCL
framework.
The first observation we can make is about the code readability. At several points in the code, we notice
things like the following:

float reducer84;
reducer84 = 0.000000e+00f;

Even if it doesn’t change anything for the compiler’s understanding, a better way for human comprehension
would be something like float reducer84 = 0.0f. However, we consider it a normal behavior since it
might be difficult to add a human-readability dimension during HLS code generation.
The second observation is about array indexes. Often, the first dimension of the arrays generated is 1.

float conv1[1][4][28][28];

This causes the generated code to have a useless outside loop that lowers the readability. Again, this doesn’t
affect the compilation, since the compiler optimizes it by erasing the outside loop.
The third observation is about optimizations that are made automatically by the Vivado HLS compiler. During
compilation, some functions (e.g. std::max()) are inlined, small loops are automatically unrolled and array
are partitioned. We consider these features being helpful and time-saving.
Finally, the most important observation, and most critical one. In subsection 4.2, we specified a type to use
for the quantization and data layers. This is respected for the ReLU layers, as shown below.

mnist_fp16.cpp
117 ap_fixed<16, 2> relu1[1][4][28][28];
118 for (ap_int<32> args = 0; args < 1; ++args) {
119 for (ap_int<32> args0 = 0; args0 < 4; ++args0) {
120 for (ap_int<32> args1 = 0; args1 < 28; ++args1) {
121 for (ap_int<32> args2 = 0; args2 < 28; ++args2) {
122 relu1[args][args0][args1][args2] = ((ap_fixed<16, 2>)((conv1[args][args0][args1][args2]

< 0.000000e+00f) ? 0.000000e+00f : conv1[args][args0][args1][args2]));↪→

123 }
124 }
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125 }
126 }

On line 122, we notice that float values are casted to ap_fixed<16, 2>, which is the data representation
we specified previously.
For the data layers (e.g. convolutional layers), calculations and storage are done in floating-point data
representation.

mnist_fp16.cpp
102 float conv1[1][4][28][28];
103 for (ap_int<32> ff = 0; ff < 4; ++ff) {
104 for (ap_int<32> yy = 0; yy < 28; ++yy) {
105 for (ap_int<32> xx = 0; xx < 28; ++xx) {
106 float reducer84;
107 reducer84 = 0.000000e+00f;
108 for (ap_int<32> ry = 0; ry < 3; ++ry) {
109 for (ap_int<32> rx = 0; rx < 3; ++rx) {
110 reducer84 = ((pad_temp[0][0][(yy + ry)][(xx + rx)] * w_conv1[ff][0][ry][rx]) +

reducer84);↪→

111 }
112 }
113 conv1[0][ff][yy][xx] = reducer84;
114 }
115 }
116 }

Line 102 shows that calculations are stored using float format, even if we specified to use 16-bit fixed-point
data representation. Moreover, we notice that calculations are also done with floating-point representation.
This limitation might make the IP more demanding in terms of resources utilization.
We tried to understand why HeteroCL does not use the ap_fixed<16, 2> format for data layers. In activation
layers, the fixed-point format is used but we look closely, no operations are made, only a comparison. It seems
that when an operation is needed, HeteroCL prefers to use the floating-point format. Surprisingly, Vivado
HLS offers an implementation for such operations. So, we assumed that the HeteroCL team did not integrate
this feature in the framework yet, or have a good reason to not do so. In the case, we did not find any
documentation talking about this choice.
In conclusion, the code generated by HeteroCL is understandable by a human, even if some enhancements can
still be made. However, we noticed that the frameworks doesn’t always respect the data format constraints
it has been given during the development phase.

4.5 Use analysis

This subsection presents our critic analysis about the use of HeteroCL for generating HLS code from Python.
Looking at the HeteroCL website, we can read that ”HeteroCL provides a fully automated compilation flow
from a HeteroCL program to heterogeneous compute platforms integrating CPUs and FPGAs”.
As it was previously shown, this statement is not entirely valid. Indeed, some widely used operators, such
as the ReLU activation function, or also widely used parameters of the 2D-Convolutional operator, like the
dilation, had to be implemented by us. Thus, the ”fully automated compilation flow” statement is yet to be
fully accurate.
Moreover, the IP generated from the code produced by HeteroCL can’t be easily integrated into a system
design by people with little to no experience in hardware designs. The manual modifications we presented
in the subsection above are required if one wants to change the protocol used to fetch the input data. The
default protocol, fetching data from an address in memory, is fine but might not be relevant in some cases, as
our system design, which carries the image data captured from the camera sensor to the HDMI output port
by using the AXI-Stream protocol.
In conclusion, HeteroCL still has a long way to go to propose a fully automated compilation flow for program-
ming FPGAs that can be used by any developer with little hardware design knowledge.
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4.6 Optimizations

This subsection presents the transformations manually applied to the HLS code to optimize it. Every step
will be presented and all resources variations will be discussed.
At this point, apart from the customizations applied previously (i.e. adding the AXI-Stream protocol and
including the weights into the IP), the HLS code hasn’t been touched. No optimizations have been applied
to the code. The Vivado HLS C++ language allows the developer to specify code optimizations by simply
adding pragmas (as in the customizations made to the code in subsection 4.3).
The “Transformations of high-level synthesis codes for high-performance computing” paper, written by Fine
Licht, Meierhans, and Hoefler, presents the possible transformations and optimizations that can be applied
to HLS code [53]. In this work, we only applied pipeline transformations to the code.
A transformation optimizes the code and more extensively, the compiled IP. It is optimized in terms of latency
(i.e. clock cycles). However, adding transformations like pipelining requires more resources. In the following
paragraphs, we will present step by step the transformations made and the differences in both terms of clock
cycles and resources utilization.
The reference IP for the transformations is the one using 16-bit fixed-point data representation. This version
will now be called FP16-opt. This is due to the fact that the work presented in this subsection has been
done after results were analyzed and discussed for the unoptimized versions generated by HeteroCL. Thus,
we chose the best among these and used it as the reference IP.
The first transformation we applied to the code is the following:

78 float pad_temp[1][1][30][30];
79 pad1_h: for (ap_int<32> index_tuple = 0; index_tuple < 30; ++index_tuple) {
80 #pragma HLS PIPELINE
81 pad1_w: for (ap_int<32> i = 0; i < 30; ++i) {
82 #pragma HLS PIPELINE
83 pad_temp[0][0][index_tuple][i] = (((((1 <= index_tuple) && (index_tuple < 29)) && (1 <= i))

&& (i < 29)) ? image[((((i - ((i + -1) % 28)) + (index_tuple * 28)) + -29) /
784)][0][(((((i - ((i + -1) % 28)) + (index_tuple * 28)) + -29) / 28) % 28)][((i + -1)
% 28)] : 0.000000e+00f);

↪→

↪→

↪→

84 }
85 }

The nested loop shown in the snippet of code above is the first padding operation of the model (just before the
first convolutional network). Here, we apply a pipelining transformation on both loops. This transformation
increases the latency by 5966 clock cycles, the number of DSP by 13, the number of Flip-Flops used by 8’269.
It also increases the number of Lookup Tables by 7’503. The BRAM usage has not been changed by this
transformation. It seems that pipelining these loops only increases the latency, thus not optimizing the IP. So
it has been discarded.
The second transformation happens in the first convolutional block, performed by 5 nested loops.

86 float conv1[1][4][28][28];
87 conv1_c: for (ap_int<32> ff = 0; ff < 4; ++ff) {
88 conv1_h: for (ap_int<32> yy = 0; yy < 28; ++yy) {
89 conv1_w: for (ap_int<32> xx = 0; xx < 28; ++xx) {
90 float reducer84;
91 reducer84 = 0.000000e+00f;
92 conv1_kh: for (ap_int<32> ry = 0; ry < 3; ++ry) {
93 conv1_kw: for (ap_int<32> rx = 0; rx < 3; ++rx) {
94 #pragma HLS PIPELINE
95 reducer84 = ((pad_temp[0][0][(yy + ry)][(xx + rx)] * w_conv1[ff][0][ry][rx]) +

reducer84);↪→

96 }
97 }
98 conv1[0][ff][yy][xx] = reducer84;
99 }

100 }
101 }

The transformation shown in the snippet of code above pipelines the most nested loop. This transformation
reduces the latency by 113’600 clock cycles while increasing the Flip-Flops usage by 244 and LUTs by 283.
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The BRAM and DSP resources utilization have stayed untouched. This particular code transformation is
interesting since it greatly reduces the latency while moderately increasing the resources utilization.
Then, we tried to pipeline the loop conv1_kh at line 92 but it changed the timing estimates from 8.671
to 15.210, thus decreasing the maximum frequency to 65.746 MHz. In terms of latency, the transformation
decreased it by 59’575 clock cycles. Since the tradeoff between latency and maximum frequency is not worth
it, we decided to revert pipelining the loop.
The third transformation consisted of pipelining the ReLU activation of the first convolutional layer. As a
test, we tried to pipeline all the loops.

102 ap_fixed<16, 2> relu1[1][4][28][28];
103 relu1_n: for (ap_int<32> args = 0; args < 1; ++args) {
104 relu1_c: for (ap_int<32> args0 = 0; args0 < 4; ++args0) {
105 #pragma HLS PIPELINE
106 relu1_h: for (ap_int<32> args1 = 0; args1 < 28; ++args1) {
107 #pragma HLS PIPELINE
108 relu1_w: for (ap_int<32> args2 = 0; args2 < 28; ++args2) {
109 #pragma HLS PIPELINE
110 relu1[args][args0][args1][args2] = ((ap_fixed<16,

2>)((conv1[args][args0][args1][args2] < 0.000000e+00f) ? 0.000000e+00f :
conv1[args][args0][args1][args2]));

↪→

↪→

111 }
112 }
113 }
114 }

These transformations reduce the latency by 15’906 clock cycles while the Flip-Flops increase by 185 and the
Lookup Tables by 148. The BRAM and DSP utilizations did not change. This transformation optimizes well
the IP.
Since the transformations are quite the same, we will not detail them anymore. Every ”case” has already
been treated (i.e. padding operation, convolution, and ReLU activation). Instead, Table 4 lists all the
transformations that have been applied to the generated Vivado HLS code. It also details the timings and
resources difference it implies. Values that are in red mean that they are not satisfying enough (i.e. resources
overflow, overlong timing) and that the code transformation was therefore not included.
The code including all the transformations presented in Table 4 is available in Appendix F.
As the result of all these transformations added in the Vivado HLS code generated by the HeteroCL framework,
we obtained the performances presented in Table 3. These performances will be discussed in the next section.

Latency 1’242’094 clock cycles
Timing 8.742 ns
Max freq. 114.390 MHz
LUT 51’545 (96.89%)
FF 39’750 (37.36%)
BRAM 88 (31.43%)
DSP 80 (36.36%)

Table 3: Latency, timing and resources optimizations after applying transformations by hand.
We generated Vivado HLS code from a Python code describing a Neural Network model. Then, we modified
the code to adapt it to our needs (i.e. AXI-Stream and weights included in the IP). Moreover, we made
critical reviews of both the code generated by HeteroCL and its use. Finally, we applied code transformations
by hand to optimize the resulting IP.
We will now discuss the performances of each of the sources mentioned previously in subsection 1.1.
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Name Cycles Timing BRAM DSP FF LUT
pad1 +5966 8.671 0 +13 +8269 +7503
conv1_kw -113600 8.671 0 0 +244 +283
conv1_kh -59575 15.210 -1 0 +361 +207
relu1 -15906 8.671 0 0 +546 +355
pad2 -59644 8.717 0 -2 +137505 +363813
conv2_kw -583537 8.671 0 0 -327 -156
pool1 -27560 8.671 0 0 +255 +195
conv3_kw -378128 8.704 0 0 -17 +80
pad3 -10357 8.704 0 0 +1129 +534
relu3 -8074 8.704 0 0 +181 +154
pad4 -30963 8.704 0 0 +1688 +641
conv4_kw -655664 8.704 0 0 +26 +58
relu4 -8074 8.704 0 0 +180 +154
relu2 -15906 8.704 0 0 +186 +148
pool2 -13848 8.731 0 0 +247 +196
pad5 -6298 8.742 0 0 +995 +429
pad2-OK -57817 8.742 0 0 +1891 +761
conv5_kw -382848 8.742 0 0 -26 +60
relu5 -4170 8.742 0 0 +177 +149
pad6 -19084 8.742 0 0 +1595 +544
conv6_kw -659600 8.742 0 0 -17 -50
relu6 -4170 8.742 0 0 +177 +149
maxpool -8656 8.742 0 0 +230 +130
maxpool1 -45 8.742 0 0 +126 +78
dense -2404 15.210 0 0 +354 +308
relu2_h 0 8.742 0 0 +1 0
relu3_h 0 8.742 0 0 0 0
pad3_h -511 8.742 0 +13 +3204 +3185
pad2_h -1199 8.742 0 +45 +21728 +26863
pad4_h -1023 8.742 0 +13 +5946 +9127
relu4_h 0 8.742 0 0 0 0
pad5_h -288 8.742 +1 +6 +1453 +1471
relu5_h 0 8.742 0 0 +4 0
pad6_h -576 8.742 0 +6 +2606 +4357
relu6_h 0 8.742 0 0 -4 0
maxpool_h 0 8.742 0 0 -5 0
softmax -18 8.742 0 0 +4 +18
softmax1 -253 28.512 0 0 +15 -36
softmax2 -522 8.742 0 0 +128 -78
results -27 8.742 0 0 +131 +96

Table 4: List of transformations applied by hand to the Vivado HLS code.
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5 Performance results

This section presents and compares the results obtained from several sources, as mentioned previously. As a
reminder, here is the list of the different sources:

• A solution running on a CPU
• A solution developed by a – human – programmer, with a HDL
• A solution generated with the framework
• The same solution as above, but optimized with code transformations manually applied after generation

In the following section, the term ”hardware latency” refers to the latency in clock cycles while the term ”time
latency” refers to the minimum latency in seconds, which is calculated by multiplying the hardware latency
by the maximum frequency.

5.1 Inference running on a CPU

The first source of results was obtained by simply running the model inference on a CPU. The code was run
on the Zybo Z7-20 processor, which is a dual-core ARM Cortex-A9 processor operating at 667 MHz [18], [54].
To perform the inference, we used the TensorFlow Lite framework [55]. It is designed to run TensorFlow
models on mobile, embedded and Internet of Things (IoT) devices. It allows on-device Machine Learning
inference with low latency and a small binary size. Among the proposed APIs by TensorFlow Lite, we used
the C++ API [56] to run the inference.
The corresponding code is available in Appendix E.

5.1.1 Accuracy

The accuracy measured for the Keras model implemented with Python (and detailed in subsection 3.3) is
97.56%.

5.1.2 Resources utilization

The only resource we could measure for the CPU-running solution was the memory utilization during inference
execution. The memory profiling was performed with the Valgrind Massif tool [57].
The Figure 7 shows the memory usage over the execution of the inference. During execution, memory usage
peaks at 313.3 KiB.

Figure 7: Inference memory usage over time.
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5.1.3 Latency

To measure the inference execution time, we performed 10 inference runs and we calculated the average of
these runs. The calculated average inference execution time was 7.386 milliseconds.
The memory usage is pretty low, as well as the execution time for a system like the Zybo Z7-20. These
performances allow to perform handwritten digits recognition up to 135 frames per second – which is more
than enough for a real-life application – while consuming low memory.

5.2 Inference developed by a human developer

The second set of results, the inference developed by a human developer, was taken from the paper written
by Solovyev, Kustov, Telpukhov, et al. [50].

5.2.1 Accuracy

The paper doesn’t mention anything about the accuracy performed by the model. However, since we based
our model and its training on the one presented in the paper, we can safely suppose that it offers about the
same accuracy as the Python model we propose (97.56%) in subsection 3.3.

5.2.2 Resources utilization

About resources utilization, the “Fixed-Point Convolutional Neural Network for Real-Time Video Processing
in FPGA” paper doesn’t talk extensively about it and, more importantly, it uses another tool for compiling
the inference SystemVerilog module. To be sure to have the same basis of comparison, we recompiled it with
Vivado, the tool used in this work. The target board, defining the available resources, is the Zybo Z7-20. Its
characteristics are detailed in Appendix A.

To obtain comparable results, we compiled the SystemVerilog module in four different ways, depending on
the number of bits used for weight’s fixed-point data representation.
After compiling the module, we obtain the following resources utilization:

Resource Utilization Available32-bit 16-bit 8-bit 4-bit
LUT 4’005 (7.53%) 2’491 (4.68%) 2’554 (4.80%) 1’917 (3.60%) 53’200
FF 2’799 (2.63%) 1’562 (1.47%) 1’010 (0.95%) 706 (0.66%) 106’400
BRAM 55 (19.64%) 28 (10.00%) 14 (5.00%) 7 (2.50%) 280
DSP 40 (18.18%) 17 (7.73%) 4 (1.82%) 4 (1.82%) 220

Table 5: Resources utilization of the inference developed by a human developer.
This resources utilization summary is valid for a sequential implementation of the model. However, human
implementation offers an interesting feature over automatically generated methods: parallelization. The
“Fixed-Point Convolutional Neural Network for Real-Time Video Processing in FPGA” paper also presents
two other implementations: one with 2 convolutional blocks parallelized and the other with 4 parallelized
convolutional blocks.

Resource Utilization Available32-bit 16-bit 8-bit 4-bit
LUT 5’979 (11.24%) 3’286 (6.18%) 3’565 (6.70%) 2’383 (4.48%) 53’200
FF 3’948 (3.71%) 2’096 (1.97%) 1’271 (1.19%) 823 (0.77%) 106’400
BRAM 68 (24.29%) 35 (12.50%) 18 (6.43%) 9 (3.21%) 280
DSP 74 (33.64%) 28 (12.73%) 2 (0.91%) 2 (0.91%) 220

Table 6: Resources utilization of the inference developed by a human developer with 2 convolutional blocks.
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Resource Utilization Available32-bit 16-bit 8-bit 4-bit
LUT 9’486 (17.83%) 4’811 (9.04%) 5’627 (10.58%) 3’163 (5.95%) 53’200
FF 6’267 (5.89%) 3’198 (3.01%) 1’852 (1.74%) 1’112 (1.05%) 106’400
BRAM 110 (39.29%) 56 (20.00%) 29 (10.36%) 15 (5.36%) 280
DSP 146 (66.36%) 54 (24.55%) 2 (0.91%) 2 (0.91%) 220

Table 7: Resources utilization of the inference developed by a human developer with 4 convolutional blocks.

5.2.3 Timing

Upon synthesis, the Vivado Design Suite outputs the timing estimates of the SystemVerilog module. We
compiled every fixed-point data representation for 1, 2 and 4 convolutional blocks. The number of parallelized
blocks didn’t change the timing, thus Table 8 only shows the timings for the different data representation.

Timing [ns] Max freq. [MHz]
32-bit 16.293 61.376
16-bit 15.303 65.347
8-bit 14.874 67.231
4-bit 14.896 67.132

Table 8: Timings for inference developed by a human developer.
We notice that the max frequency decreases with the number of bits used for data representation.

5.2.4 Latency

According to this same paper, the number of clock cycles required to predict a digit from an image is 236’746.
Table 9 details the clock cycles needed for each stage of the inference.

Stage Number of clock cycles
Loading input image 1’570
1st convolution: loading weights 76
1st convolution: processing 12’605
2nd convolution: loading weights 291
2nd convolution: processing 50’416
1st max pooling: processing 3’164
3rd convolution: loading weights 580
3rd convolution: processing 25’569
4th convolution: loading weights 1’155
4th convolution: processing 51’136
2nd max pooling: processing 1’623
5th convolution: loading weights 2’309
5th convolution: processing 27’009
6th convolution: loading weights 4’611
6th convolution: processing & global max pooling 54’016
Dense layer: loading weights 356
Dense layer: processing 244
Saving result 16
Total 236’746

Table 9: Clock cycles at each stage of FPGA-based image processing [50].
The hardware latencies detailed in Table 9 are valid only for the sequential implementation.
Table 10 shows the clock cycles that are needed when convolutional blocks are parallelized. To obtain the
time latency in milliseconds, we multiply the number of clock cycles (hardware latency) by the maximum
frequency presented in Table 8.
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Convolutional blocks Clock cycles Data type Timing [ms]

1 236’746
32-bit 3.857
16-bit 3.623
8-bit 3.521
4-bit 3.527

2 125’320
32-bit 2.042
16-bit 1.918
8-bit 1.864
4-bit 1.867

4 67’861
32-bit 1.106
16-bit 1.038
8-bit 1.009
4-bit 1.011

Table 10: Clock cycles with parallelized convolutional blocks [50].
Table 10 shows that adding parallelized convolutional blocks reduces drastically the inference time.

5.3 Inference generated with our workflow

The third source comes from the Vivado HLS code that has been generated following the workflow described
in this paper. Upon compilation, the Vivado HLS tool outputs several estimates: resources, timing and
latency. In this subsection, we will present the values estimated by the tool for each IPs previously generated.

5.3.1 Accuracy

The Table 11 shows the accuracy each previously generated IP performs for handwritten digits recognition.
Generated IP Accuracy
FP32 97.26%
FP16 97.28%
FP8 9.81%
FP4 9.80%

Table 11: Accuracy for each generated IP.
It can be noticed that allocating less than 16 bits for fixed-point data representation decreases drastically the
model accuracy.
Interestingly, we notice that decreasing the bits used from 32 to 16 increases slightly the model accuracy. It
shows that handwritten digits recognition doesn’t require high precision for its weights.

5.3.2 Resources utilization

The manual modifications we made to the generated Vivado HLS code implies that weights are included
into the IP as memory. Thus, a lot of memory resources might be used for the IP implementation when the
SystemVerilog module written by Solovyev, Kustov, Telpukhov, et al. fetches weights from another module
than the one doing the inference. Moreover, we also introduced the AXI-Stream protocol, which might change
resources utilization and latency. For the sake of the good comparison, in this subsection, we will present four
versions for each of the generated Vivado HLS IPs.
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Table 12 presents the resources available on the Zybo Z7-20 development board. The values are interesting
for comparing with the following graphs.

Resource Available
LUT 53’200
FF 106’400
BRAM 280
DSP 220

Table 12: Amount of resources available on the Zybo Z7-20.
1. No AXI-Stream & no weights included.

Figure 8: Resources utilization without AXI-Stream and weights not included into the IP.
Figure 8 shows that the BRAM utilization increases proportionately with the number of bits used for
fixed-point data representation.
About the other resources, we notice that 32- and 16-bit use approximatively the same amount and the
same goes for 8- and 4-bit fixed-point data representation.

2. No AXI-Stream & weights included.

Figure 9: Resources utilization without AXI-Stream and weights included into the IP.
From the chart above, we observe that including the model’s weights into the IP only increase the
amount of BRAM used. The other resources are left untouched.
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3. AXI-Stream & no weights included.

Figure 10: Resources utilization with AXI-Stream and weights not included into the IP.
Adding the AXI-Stream protocol for fetching the input data increases the utilization of BRAM, FF and
LUT resources. The DSP48E resources utilization is the same with or without the AXI-Stream protocol.

4. AXI-Stream & weights included.

Figure 11: Resources utilization with AXI-Stream and weights included into the IP.
As noticed in the previous graphs, all resources utilization increase except for the DSP48E, which doesn’t
change either the AXI-Stream protocol or the weights are included in the IP.

From the tables above, it can be seen that the more bits are used for data formats, the more resources are
used. When the weights are included into the IP, the BRAM resources utilization increases.
When AXI-Stream is used as the protocol for fetching input data, BRAM, Flip-Flops and LUT resources
increase a bit.

5.3.3 Timing

Upon generation, the Vivado HLS tool also outputs the timing estimates. These timings change with the
data format but do not depend on the AXI-Stream protocol or where the weights are stored. Table 13 shows
the estimated timings for each of the generated IPs.

Timing [ns] Max freq. [MHz]
FP32 8.621 115.996
FP16 8.671 115.327
FP8 8.465 118.133
FP4 8.709 114.824

Table 13: Estimated timings for generated IPs.
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We notice that changing the fixed-point data representation doesn’t significantly change the maximum fre-
quency (1% of variation at most).

5.3.4 Latency

The latency changes if the AXI-Stream protocol is used for the input data or not. Latency estimates will be
presented for each previously generated IP.
For calculating the estimated timing in milliseconds, we take the average latency and multiply it by the
maximum frequency presented in Table 13.

1. FP32
Minimum Maximum Average Timing [ms]

No Stream 4’570’271 4’810’211 4’690’241 40.435
Stream 4’571’254 4’811’194 4’691’224 40.443

Table 14: Latency estimates for 32-bit fixed-point IP.
2. FP16

Minimum Maximum Average Timing [ms]
No Stream 4’242’559 4’489’443 4’366’001 37.858
Stream 4’243’542 4’490’426 4’366’984 37.866

Table 15: Latency estimates for 16-bit fixed-point IP.
3. FP8

Minimum Maximum Average Timing [ms]
No Stream 3’022’067 3’215’371 3’118’719 26.400
Stream 3’023’050 3’216’354 3’119’702 26.408

Table 16: Latency estimates for 8-bit fixed-point IP.
4. FP4

Minimum Maximum Average Timing [ms]
No Stream 3’017’363 3’210’667 3’114’015 27.120
Stream 3’018’346 3’211’650 3’114’998 27.129

Table 17: Latency estimates for 4-bit fixed-point IP.
The tables above show that adding the AXI-Stream protocol for fetching input data increases the hardware
latency by 983 clock cycles, independently of the fixed-point data representation.
The latency decreases greatly when the number of bits used for data representation is also decreased. The
difference is less noticeable when passing from 8-bit to 4-bit data representation. However, it is interesting to
note that even if the hardware latency decreases a bit when using 4-bit instead of 8-bit data representation,
the time latency (in milliseconds) increases. This is due to the maximum frequency being lower for 4-bit data
representation.
From all the results presented in this subsection, we decided to pick the IP which uses the 16-bit fixed-
point data representation because it offers the best accuracy for resources utilization. It will be used for the
comparison with the other solutions.

5.4 Inference generated and optimized

The final source is the result of the subsection 4.6. This actual subsection presents the performances offered
by the IP with transformations applied by hand to the code generated by HeteroCL. These transformations
have been only applied to the IP using 16-bit for fixed-point data representation, because it was the best
candidate of the unoptimized generated solutions.
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5.4.1 Accuracy

The accuracy of this solution is the same as the 16-bit unoptimized IP detailed in the previous subsection. As
a reminder, it was 97.28%.

5.4.2 Resources utilization

Adding transformations to the code such as pipelining functions increases the resources utilization. Table 18
presents the resources utilization of the optimized generated solution.

Resource Utilization Available
LUT 51’545 (96.89%) 53’200
FF 39’750 (37.36%) 106’400
BRAM 88 (31.43%) 280
DSP 80 (36.36%) 220

Table 18: Resources utilization for optimized generated IP.
We notice that the LUT utilization is almost overflowing. The DSP utilization is close to the double of the
previous solution.

5.4.3 Timing

Upon synthesis, the Vivado Design tool outputs 8.742 nanoseconds as the critical path delay. This means
that the maximum frequency at which the IP can operate is 114.390 MHz.

5.4.4 Latency

The main goal of applying transformations to the code was to reduce the latency. At the end, when all
transformations presented in Table 4 have been applied, the hardware latency of the IP is 1’242’094 clock
cycles, which is about a fourth of the solution presented previously.
If we multiply this latency by the estimated timing, we obtain a time latency of 10.858 milliseconds.

5.5 Comparison

This subsection summarizes and compares the three solutions on their accuracy, their resources utilization,
and their timings.
From the HeteroCL-generated solutions, we picked the ones using the 16-bit fixed-point data representation,
as they presented the best performances over the other data formats. In order to have a consistent comparison,
we will therefore use the human-developed module with 16-bit fixed-point.
In the following results, the solution named ”CPU” refers to the first set of results, where the inference was
run on a CPU. The solution referred by ”Human-#” is the one described by Solovyev, Kustov, Telpukhov,
et al. in the “Fixed-Point Convolutional Neural Network for Real-Time Video Processing in FPGA” paper
[50]. The ”#” represents the number of convolutional blocks that have been parallelized. An absence of ”#”
means that the value is the same regardless of whether several convolutional blocks have been parallelized or
not.
”FP16” refers to the IP previously generated by HeteroCL and which uses the 16-bit fixed-point data repre-
sentation.
Finally, ”FP16-opt” refers to the last solution, which is FP16 but optimized with code transformations.
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5.5.1 Accuracy

Solution Accuracy
CPU 97.56%
Human 97.56%
FP16 97.28%
FP16-opt 97.28%

Table 19: Accuracy of the different solutions.
From Table 19, we notice that the accuracy doesn’t change much among the proposed solutions. This
first comparison shows that HeteroCL performs well at keeping quite the same accuracy even with weights
fixed-point data original representation being truncated.

5.5.2 Resources utilization

Comparing the software solution and the hardware solutions is complex for resources utilization, since they
are not very related. Here, we compare the memory utilization for each solution and then we compare the
Zybo Z7-20 development board resources utilization for each hardware solution.

Solution Memory [KiB]
CPU 313.3
Human-1 63.0
Human-2 78.8
Human-4 126.0
FP16 195.8
FP16-opt 198.0

Table 20: Memory utilization of the different solutions.
Table 20 shows that hardware solutions require less memory than the software one. The human-developed
inference solution requires up to 5 times less than the CPU one (for the sequential version). The optimized
version of FP16 doesn’t require much more memory than the unoptimized version (1% more).
The next table details the complete resources utilization for all hardware solutions. As a reminder, the
Zybo Z7-20 FPGA development board offers 53’200 LUTs, 106’400 FFs, 280 Block Random Access Memory
(BRAM) and 220 DSP48E1 units.

Resource Human-1 Human-2 Human-4 FP16 FP16-opt
LUT 2’491 (4.68%) 3’286 (6.18%) 4’811 (9.04%) 34’458 (64.77%) 51’545 (96.89%)
FF 1’562 (1.47%) 2’096 (1.97%) 3’198 (3.01%) 17’079 (16.05%) 39’750 (37.36%)
BRAM 28 (10.00%) 35 (12.50%) 56 (20.00%) 87 (31.07%) 88 (31.43%)
DSP 17 (7.73%) 28 (12.73%) 54 (24.55%) 48 (21.82%) 80 (36.36%)

Table 21: Resources utilization of the hardware solutions.
We notice that resources utilization, especially for LUTs and FFs, is way more higher for the IP generated
with HeteroCL than for the IPs developed by a human developer. Most notably, the FP16 solution only has
one convolutional block when the solution developed by Solovyev, Kustov, Telpukhov, et al. offers up to 4
convolutional blocks in parallel.
The optimized FP16-opt solution uses almost all of the available LUTs and consumes about the double of the
FFs and DSP units than the unoptimized solution. It only requires one more BRAM.

5.5.3 Timing

Timing cannot be discussed for the software solution since it doesn’t have critical path delay nor a maximum
frequency at which it can operate. Thus, only the hardware solutions will be discussed in the table below.
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Solution Timing [ns] Max freq. [MHz]
Human 15.303 65.347
FP16 8.671 115.327
FP16-opt 8.742 114.390

Table 22: Timing estimates for hardware solutions.
Table 22 shows that the IP generated by HeteroCL can operate at a frequency almost twice as big as the
SystemVerilog module presented in the “Fixed-Point Convolutional Neural Network for Real-Time Video
Processing in FPGA” paper [50]. We notice that both the FP16 and FP16-opt solutions have about the same
maximum frequency.
This measure might be interesting, depending on the latency of both IPs, since the generated one can operate
faster. This same latency is presented next.

5.5.4 Latency

Solution Clock cycles Latency [ms]
CPU - 7.386
Human-1 236’746 3.623
Human-2 125’320 1.918
Human-4 67’861 1.038
FP16 4’366’984 37.866
FP16-opt 1’242’094 10.858

Table 23: Latency of the different solutions.
In terms of both hardware and time latencies, the table above shows that the hardware solution written by a
human developer outperforms software and the other hardware solutions. We also notice the performances
increase when parallelizing multiple convolutional blocks.
We observe that adding simple code transformations to the generated Vivado HLS code reduces the hardware
latency by a factor of almost 4. In terms of time latency, the FP16-opt solution almost reaches the software
solution.

5.5.5 Summary

From Table 19, we noticed that truncating the weights width to 16-bit from 32-bit doesn’t change the accuracy
much. This observation is valid for both hardware solutions.
In terms of memory usage, hardware solutions beat the software solution by a factor of two thirds. We saw
that adding convolutional blocks to the human-developed hardware solution increases the memory usage but
stays way under the software solution usage. However, the FP16 solution requires more memory than the
human-developed, even if up to 4 convolutional blocks are incorporated in the SystemVerilog module. We
also saw that adding code transformations for pipelining loops doesn’t increase memory usage by a significant
amount.
When comparing the resources usage of hardware solutions, the human-developed solution clearly outperforms
the solution generated by HeteroCL. For some resources (i.e. LUT), there is a difference of more than 60%.
We also saw that the optimized FP16-opt solution uses almost all of the available LUTs and consumes about
the double of FFs and DSP48E1 units than the FP16 hardware solution.
When it comes to timing, HeteroCL-generated IPs outperform the human-developed solution. In fact, we saw
that both unoptimized and optimized solutions can operate at a maximum frequency of almost the double of
the human-developed’s maximum frequency.
However, concerning time latency, the generated IP is far behind the other two solutions. The latter performs
the inference in more than 37 milliseconds, when the software solution do it in about 7 milliseconds. Finally,
the best of the three solutions appears to be the hardware solution developed by a human developer. It
performs inference in 3.623 milliseconds with only one convolutional block and it goes down to 1 millisecond
with 4 convolutional blocks. We noticed that once code transformations have been applied to the HeteroCL
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solution, time latency has been reduced by almost a factor 4 for the same maximum frequency, thus decreasing
to 10.858 milliseconds.
Ultimately, this comparison showed that the hardware solution written by Solovyev, Kustov, Telpukhov, et al.
performs better for almost all points, except for the maximum frequency. The software solution defends defends
itself rather well on all points of comparison. Moreover, the hardware solutions automatically generated with
the HeteroCL framework keep up in term of memory usage but not in terms of overall resources usage. They
offer the greatest maximum frequency but fails to keep pace in terms of latency, thus cancelling the interest
for its maximum frequency. It is interesting to note that the optimized version of the HeteroCL-generated
hardware solution doesn’t require much knowledge to apply code transformations while offering a latency 4
times lower than the unoptimized version. However, optimizing the IP by pipelining its loops requires a lot of
resources, and we noticed that the optimized version almost overflew in terms of LUTs.
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6 Conclusion

In this work, we aimed at studying the available technologies and toolchains for generating hardware acceler-
ators automatically. We especially looked for a solution that reduces or even ideally eliminates the hardware
knowledge required to produce such an accelerator under normal circumstances.
We wanted to critically discuss the use of such a toolchain and compare the resulting generated hardware
accelerators with other solutions. These solutions include both a software solution and a hardware solution
developed by a human developer.
As a testbench, we designed a system in which we wanted to integrate the future generated accelerator. This
system captures image with a camera and outputs a predicted digit it recognizes from the camera data.
We established a state of the art of such technologies. We listed every framework or toolchain that allow
creating an hardware accelerator from an high-level programming language, such as Python, to an Hardware
Description Language (HDL), such as VHDL or SystemVerilog.
For each framework, we presented its functionalities and we reviewed different criteria (i.e. Maintenance and
update frequency, licensing, supported inputs and outputs). At the end of the state of the art, we went
through each criterion one by one to exclude frameworks and find the best candidate among them. HeteroCL
was decided to be the best framework to integrate in this project.
With HeteroCL chosen as the framework to generate an hardware accelerator, we then had to choose the
accelerator we were aiming to create to use and later critically analyze and discuss the framework. Since
Machine Learning is a modern computing field and it requires a lot of computing power, we chose to implement
an accelerator for hand-written digits recognition. To classify these digits, we had to describe the Machine
Learning model we will use, how to prepare it for training and its performances.
The model we chose for doing the classification task uses convolutional layers. It was trained with the MNIST
dataset, which is slightly modified (i.e. inverted colors) to better suit our needs, on 60’000 images. After the
testing phase, the Machine Learning model presented an accuracy of 97.56%.
Then, we used HeteroCL, the framework chosen to automatically generate Vivado High-Level Synthesis code
in order to produce an hardware accelerator. We presented how to use the framework in sequence to describe
the Machine Learning model presented previously. Once HeteroCL produced the High-Level Synthesis code,
we applied some manual modifications so the accelerator better fits the testbench system. Initially, the
accelerator fetched the input data and the model weights from memory. We changed the input source to a
stream using the AXI-Stream protocol and including the model weights directly into the IP instead of having
to load them from memory.
Having used HeteroCL and given its flaws and qualities, we critically discussed the quality of the code its
produces and also discussed its utilization and what a developer should expect when using it. The code is
easily readable by a human even if there is a lot of space for enhancement. About its utilization, we saw
that it’s quite impossible to not intervene during the generation. HeteroCL can’t yet adapt to the system
specifications and a qualified developer must verify and modify the generated High-Level Synthesis code.
For the sake of having an additional vector of comparison, we created an optimized version of the accelerator
generated with HeteroCL. To optimize it, we added some code transformations, such as pipelining loops, to
decrease the IP latency.
Finally, we compared the solutions. In terms of memory usage, the human-developed hardware solution shows
the best results. It requires up to 5 times less than the software solution and 3 times less than the HeteroCL-
generated solutions (both optimized and unoptimized).
Resources utilization could be compared only among hardware solutions. The human-developed solution
completely outperforms the solutions generated by the framework. Indeed, the human-developed solution
uses at most 9.04% of the Lookup Tables resources while the unoptimized HeteroCL solution requires 64.77%
and up to 96.89% for the optimized version.
In terms of timing, the solutions generated with HeteroCL offer about 115 MHz as their maximum frequency
while the human-developed solution proposes 65 MHz. However, the advantage of this performance is canceled
by the latency of the HeteroCL-generated accelerators. Indeed, the latency is driven by clock cycles, and the
human-developed solutions clearly outperform the other solutions. When performing the inference with only
one convolutional block, the human-developed solution requires 236’746 clock cycles and down to 67’861
when it has four convolutional blocks. In the mean time, HeteroCL-generated solutions need 4’366’984 clock
cycles for the unoptimized version and 1’242’094 clock cycles for the optimized version. At their maximum
frequency, the unoptimized version performs the inference in about 37 milliseconds, while the optimized version
can do it in less than 11 milliseconds. Human-developed version can perform the inference between 3.6 and
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1.0 milliseconds. The software version does it in 7.4 milliseconds.
In conclusion, HeteroCL achieves the generation of hardware accelerators. The accelerator we aimed at
generating in this work was functional. However, it needed to be tuned a bit by hand to respect the system
characteristics, such as fetching input data using the AXI-Stream protocol. In terms of performance, HeteroCL
doesn’t reach yet software and human-developed hardware solutions. However, we demonstrated that it is
possible to apply some relatively simple code transformations in order to pipeline loops. These transformations
allow to reduce the inference latency by almost 4 times, but require greater resources.
Despite achieving the generation of hardware accelerators, we still are far from the ideal case where the user
doesn’t have to intervene after the generation. And even if it was the case, there is still the need to integrate
the accelerator into a design system to make use of it, and this requires hardware knowledge.
It is also important to note that HeteroCL and all the other frameworks presented in the section 2 are very
new technologies that are only a few months, even weeks or days old in some cases. Given their state of
development today and what they can already achieve, we are more than confident that these technologies
will rapidly evolve and improve in the near future.
It is important to note that this project aimed at generating an hardware accelerator that does Machine
Learning inference, which implies important operations such as 4-dimensional convolutional operations. The
results obtained here are valid for complex operations but for less important computational loads (e.g. 2-
dimensional matrix multiplication), HeteroCL might show better results than both software and human-
developed hardware solutions.
Additionally, the code transformations that have been manually applied to produce an optimized version of
the HLS code generated by HeteroCL, were quite simple. They only consisted of pipelining some loops. It is
more than likely that better and smarter code transformations can be applied to reach even better tradeoffs.
The future development of such technologies promises to be interesting and to find applications in a wide
variety of domains. These domains could be data centers (e.g. processing queries), autonomous cars or
personal computers. For the latter, an idea would be to make use of the Non-Volatile Memory Express
(NVME) interface to invoke the FPGA with a bitstream to perform a specific task, such as file-zipping,
calculating SHA256 sum, and so on.
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Acronyms

Acronyms

ANN Artificial Neural Network
AP SoC All Programmable System-on-Chip

BRAM Block Random Access Memory

CNN Convolutional Neural Network
CPU Central Processing Unit

DL Deep Learning
DMA Direct Memory Access
DNN Deep Neural Network
DSL Domain-Specific Language

ESP Embedded Scalable Platforms

FF Flip-Flop
FFC Flat-Flexible Cable
FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

HDL Hardware Description Language
HDMI High-Definition Multimedia Interface
HLS High-Level Synthesis

I2C Inter-Integrated Circuit
ICT Information and Communications Technologies
IoT Internet of Things

JIT Just-in-Time

LRN Local Response Normalisation
LUT Lookup Table

ML Machine Learning
MLP Multi-Layer Perceptron

NN Neural Network
NoC Network-on-Chip
NVDLA NVIDIA Deep Learning Accelerator
NVME Non-Volatile Memory Express

ONNC Open Neural Network Compiler

ReLU Rectified Linear Unit

SDRAM Synchronous Dynamic Random Access Memory
SoC System-on-Chip

VDMA Video Direct Memory Access
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Acronyms

VTA Versatile Tensor Accelerator
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Appendices

A Zybo Z7-20 characteristics

The Zybo Z7 is a feature-rich, ready-to-use embedded software and digital circuit development board built
around the Xilinx Zynq-7000 family. The Zynq family is based on the Xilinx All Programmable System-
on-Chip (AP SoC) architecture, which tightly integrates a dual-core ARM Cortex-A9 processor with Xilinx
7-series FPGA logic.
The Zynq processor offers the following characteristics:

• 667 MHz dual-core Cortex-A9 processor
• Zynq-7000 (XC7Z020) FPGA
• 1 GB DDR3L
• USB, Ethernet, HDMI (in/out), Pmod, and Pcam ports
• Programmable from JTAG, Quad-SPI flash, and microSD card
• Programmable logic equivalent to Artix-7 FPGA

The FPGA XC7Z020 part has the following specifications:
• 13’300 Logic cells
• 53’200 6-input LUTs
• 106’400 Flip-Flops
• 280 18-Kb Block RAM (630 KB)
• 220 DSP Slices

Figure 12 shows the Zynq AP SoC architecture and Figure 13 presents the Zybo Z7-20 main components.

Figure 12: Zynq APSoC architecture.
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Figure 13: Zybo Z7-20.
1. Power switch

2. Power select jumper

3. USB JTAG/UART port

4. MIO user LED

5. MIO Pmod port

6. USB 2.0 Host/OTG port

7. USB Host power enable
jumper

8. Standard Pmod port

9. User switches

10. User LEDs

11. MIO user buttons

12. High-speed Pmod ports
13. User buttons
14. User RGB LEDs
15. XADC Pmod port
16. Audio codec ports
17. Unique MAC address label
18. External JTAG port
19. HDMI input port
20. Pcam MIPI CSI-2 port
21. microSD connector
22. HDMI output port
23. Ethernet port

24. External power supply con-
nector

25. Fan connector

26. Programming mode select
jumper

27. Power supply good LED

28. FPGA programming done
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29. Processor reset button

30. FPGA clear configuration
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31. Zynq-7000

32. DDR3L memory
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B src/python/train_nn.py

1 # Imports
2 import os
3 import numpy as np
4

5 # Set backend to Tensorflow
6 os.environ['KERAS_BACKEND'] = 'tensorflow'
7 # Disable GPU and use CPU
8 os.environ['CUDA_VISIBLE_DEVICES'] = '0'
9 # Disable Tensorflow logging

10 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
11

12 from PIL import Image
13

14 import tensorflow as tf
15 from keras.datasets import mnist
16 from keras.layers import Activation, Input, Dense, GlobalAveragePooling2D, GlobalMaxPooling2D, Conv2D,

MaxPooling2D↪→

17 from keras.models import Model
18 from keras.optimizers import Adam
19 from keras.utils import np_utils
20

21 import matplotlib.pyplot as plt
22

23 # Constants
24 DEBUG = False
25 IMG_H = 28
26 IMG_W = 28
27 WEIGHTS_PATH = 'mnist_weights.h5'
28 RESCALED_WEIGHTS_PATH = 'mnist_weights_rescaled.h5'
29

30 class DataFormatException(Exception):
31 def __init__(self, data_format):
32 super('Wrong data_format specified: {}'.format(data_format))
33

34 def dbg_print(msg):
35 if (DEBUG is True):
36 print('[DEBUG] {}'.format(msg))
37

38 def load_mnist_data(data_format='channels_first'):
39 '''
40 Load MNIST dataset.
41

42 Parameters
43 ----------
44 data_format : str, optional
45 The data format used (default is 'channels_first')
46

47 Return
48 -------
49 train_x, train_y, test_x, test_y : array, array, array, array
50 Training images, training labels, testing images, testing labels.
51 '''
52 (train_x, train_y), (test_x, test_y) = mnist.load_data()
53

54 # Reshape data according to the specified data format
55 if (data_format is 'channels_first'):
56 train_x = train_x.reshape(train_x.shape[0], 1, IMG_H, IMG_W)
57 test_x = test_x.reshape(test_x.shape[0], 1, IMG_H, IMG_W)
58 elif (data_format is 'channels_last'):
59 train_x = train_x.reshape(train_x.shape[0], IMG_H, IMG_W, 1)
60 test_x = test_x.reshape(test_x.shape[0], IMG_H, IMG_W, 1)
61 else:
62 raise DataFormatException(data_format)
63

64 # Convert to float32
65 train_x = train_x.astype('float32')
66 test_x = test_x.astype('float32')
67

68 dbg_print('train_x.shape: {}'.format(train_x.shape))
69 dbg_print('test_x.shape : {}'.format(test_x.shape))
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70

71 # Convert class vectors to binary class matrices
72 train_y = np_utils.to_categorical(train_y, 10)
73 test_y = np_utils.to_categorical(test_y, 10)
74

75 # Invert images (from white on black to black on white)
76 train_x = 255 - train_x
77 test_x = 255 - test_x
78

79 return train_x, train_y, test_x, test_y
80

81 def build_model(data_format='channels_first', use_bias=False):
82 '''
83 Define network architecture.
84

85 Parameters
86 ----------
87 data_format : str, optional
88 The data format used (default is 'channels_first').
89 use_bias : boolean, optional
90 Whether to use bias or not (default is False).
91

92 Return
93 -------
94 model : keras.models.Model
95 The Keras model of the network.
96 '''
97 # Input is 28x28 grayscale (1 component) pixels
98 if (data_format is 'channels_first'):
99 input = Input((1, IMG_H, IMG_W))

100 elif (data_format is 'channels_last'):
101 input = Input((IMG_H, IMG_W, 1))
102 else:
103 raise DataFormatException(data_format)
104

105 conv1 = Conv2D(4, (3,3), activation='relu', padding='same', data_format=data_format, name='conv1',
use_bias=use_bias)(input)↪→

106 conv2 = Conv2D(4, (3,3), activation='relu', padding='same', data_format=data_format, name='conv2',
use_bias=use_bias)(conv1)↪→

107 pool1 = MaxPooling2D((2,2), strides=(2,2), data_format=data_format, name='pool1')(conv2)
108

109 conv3 = Conv2D(8, (3,3), activation='relu', padding='same', data_format=data_format, name='conv3',
use_bias=use_bias)(pool1)↪→

110 conv4 = Conv2D(8, (3,3), activation='relu', padding='same', data_format=data_format, name='conv4',
use_bias=use_bias)(conv3)↪→

111 pool2 = MaxPooling2D((2,2), strides=(2,2), data_format=data_format, name='pool2')(conv4)
112

113 conv5 = Conv2D(16, (3,3), activation='relu', padding='same', data_format=data_format, name='conv5',
use_bias=use_bias)(pool2)↪→

114 conv6 = Conv2D(16, (3,3), activation='relu', padding='same', data_format=data_format, name='conv6',
use_bias=use_bias)(conv5)↪→

115 pool3 = GlobalMaxPooling2D(data_format=data_format, name='pool3')(conv6)
116

117 dense1 = Dense(10, activation=None, use_bias=use_bias)(pool3)
118 output = Activation('softmax')(dense1)
119

120 model = Model(inputs=input, outputs=output)
121 model.summary(print_fn=dbg_print)
122

123 return model
124

125 def train_model(predict_image=False, data_format='channels_first') -> Model:
126 '''
127 Build and train the neural network model, then save into the file defined by
128 the `WEIGHTS_PATH` constant.
129 If the file already exists, load it.
130

131 Parameters
132 ----------
133 predict_image : boolean, optional
134 Whether to predict class from `test_image.png` or not (default is False).
135

136 Return
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137 ------
138 model : keras.models.Model
139 The trained model.
140 '''
141 # Build Keras model
142 model = build_model(data_format=data_format)
143

144 # Check if model has already been trained
145 if (os.path.isfile(WEIGHTS_PATH) is False):
146 print('Weights file ({}) could not be found. Initiating model

training...'.format(WEIGHTS_PATH))↪→

147 # Load MNIST dataset
148 train_x, train_y, test_x, test_y = load_mnist_data(data_format=data_format)
149

150 # Training parameters
151 learning_rate = 0.001
152 optimizer = Adam(lr=learning_rate)
153 loss='categorical_crossentropy'
154 metrics=['accuracy']
155 batch_size = 128
156 epochs = 10
157

158 model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
159

160 model.fit(train_x, train_y, batch_size=batch_size, epochs=epochs, verbose=1,
validation_data=(test_x, test_y))↪→

161 score = model.evaluate(test_x, test_y, verbose=0)
162

163 print('Model score :', score[0])
164 print('Model accuracy:', score[1])
165

166 model.save(WEIGHTS_PATH)
167 print('Model saved into {}'.format(WEIGHTS_PATH))
168 else:
169 print('Weights file exists. Loading model...')
170 model.load_weights(WEIGHTS_PATH)
171

172 if (predict_image is True):
173 test_img = np.asarray(Image.open('test_image.png'), dtype='float32')
174 test_img = np.reshape(test_img, (1,1,IMG_H,IMG_W))
175

176 preds = model.predict(test_img, batch_size=1)
177 print('predictions: {}'.format(preds))
178 print('predicted : {} (expected: 3)'.format(np.argmax(preds, axis=1)))
179

180 return model
181

182 def rescale_weights(model: Model, data_format='channels_first') -> Model:
183 # Coefficient to make safe gap for found range to prevent overflow. Lower = less safe. Higher = more

rounding error.↪→

184 GAP_COEFF = 1.1
185

186 # Check if weights have already been rescaled
187 if (os.path.isfile(RESCALED_WEIGHTS_PATH) is False):
188 print('Rescaled weights file ({}) could not be found. Initiating weights

rescaling...'.format(RESCALED_WEIGHTS_PATH))↪→

189 # Get all images from MNIST dataset
190 train_x, _, test_x, _ = load_mnist_data(data_format=data_format)
191 x = np.concatenate((train_x, test_x))
192

193 # Initialize reduction rate
194 reduction_rate = 1.0
195

196 # Iterate over layers
197 for layer in model.layers:
198 dbg_print('Getting min and max value for layer \'{}\''.format(layer.name))
199

200 weights = layer.get_weights()
201 # Check there are weights available
202 if (len(weights) > 0):
203 # Extract submodel from original model
204 submodel = Model(inputs=model.inputs, outputs=layer.output)
205 submodel.summary(print_fn=dbg_print)
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206 preds = submodel.predict(x)
207

208 # We're looking for the most out and about the scales. Weights should not exceed 1.0
including.↪→

209 coeff = GAP_COEFF * max(abs(preds.min()), abs(preds.max()), abs(weights[0].min()),
abs(weights[0].max()))↪→

210

211 dbg_print(' Submodel shape : {}'.format(preds.shape))
212 dbg_print(' Min preds value : {}, max: {}'.format(preds.min(), preds.max()))
213 dbg_print(' Min weights value: {}, max: {}'.format(weights[0].min(), weights[0].max()))
214 dbg_print(' Reduction coeff : {}'.format(coeff))
215

216 # Rescale weights
217 layer.set_weights(weights / coeff)
218 reduction_rate = reduction_rate * coeff
219 else:
220 dbg_print('-> No weights available')
221 # For better readability
222 dbg_print('')
223

224 model.save_weights(RESCALED_WEIGHTS_PATH)
225 print('Rescaled weights saved into {}'.format(RESCALED_WEIGHTS_PATH))
226 print('Reduction rate: {}'.format(reduction_rate))
227 else:
228 print('Rescaled weights file exists. Loading model...')
229 model.load_weights(RESCALED_WEIGHTS_PATH)
230

231 return model
232

233 def main():
234 data_format = 'channels_last'
235

236 print('=== MODEL TRAINING ===')
237 model = train_model(predict_image=False, data_format=data_format)
238

239 print('=== WEIGHTS RESCALING ===')
240 model = rescale_weights(model, data_format=data_format)
241

242 model.save('mnist_model_rescaled.h5')
243

244 _, _, test_x, test_y = load_mnist_data(data_format=data_format)
245

246 labels = np.argmax(test_y, axis=1)
247 # predictions = np.argmax(model.predict(test_x), axis=1)
248 # score = np.sum(np.equal(predictions, labels))
249 predictions = np.zeros(labels.shape)
250 times = np.zeros(labels.shape)
251

252 import time
253 for i in range(len(test_x)):
254 image = test_x[i].reshape(1,28,28,1)
255

256 time_start = time.perf_counter()
257 preds = model.predict(image)
258 time_end = time.perf_counter()
259

260 predictions[i] = np.argmax(preds, axis=1)
261 times[i] = time_end - time_start
262

263 score = np.sum(np.equal(predictions, labels))
264 print('\n-> Testing accuracy: {}%'.format((score / len(test_x) * 100.0)))
265 print('-> Inference time: {} ms'.format(np.average(times) * 1000))
266

267 if __name__ == '__main__':
268 main()
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C src/python/generate_hls.py

1 # pylint: disable=no-member,undefined-variable
2

3 # Imports
4 import h5py
5 import numpy as np
6

7 import heterocl as hcl
8 import hlib
9 import heterocl.tvm as tvm

10

11 from keras.datasets import mnist
12 from keras.utils import np_utils
13

14 from collections import OrderedDict
15

16 # Constants
17 DEBUG = False
18 IMG_H = 28
19 IMG_W = 28
20 WEIGHTS_FILE = 'mnist_weights_rescaled.h5'
21

22 # Let every operation be floating-point
23 hcl.init(hcl.Float())
24

25 def dbg_print(msg):
26 if (DEBUG is True):
27 print('[DEBUG] {}'.format(msg))
28

29 class DataFormatException(Exception):
30 def __init__(self, data_format):
31 super('Wrong data_format specified: {}'.format(data_format))
32

33 # TODO: Include in hlib
34 def global_max_pool(data, name='global_max_pool'):
35 assert len(data.shape) == 4, 'only support 4-dim global pooling'
36 batch, channels, height, width = data.shape
37

38 kernel = (height,width)
39 stride = (1,1)
40 max_pool = hlib.nn.max_pool(data, kernel, stride)
41

42 return hcl.compute(
43 (batch, channels),
44 lambda i,c: max_pool[i,c,0,0],
45 dtype=data.dtype,
46 name=name,
47 attrs=OrderedDict([('app_name', tvm.make.StringImm('global_max_pool'))])
48 )
49

50 def load_mnist_data(data_format='channels_first'):
51 '''Load MNIST dataset.
52 Parameters
53 ----------
54 data_format : str, optional
55 The data format used (default is 'channels_first')
56 '''
57 (train_x, train_y), (test_x, test_y) = mnist.load_data()
58

59 # Reshape data according to the specified data format
60 if (data_format is 'channels_first'):
61 train_x = train_x.reshape(train_x.shape[0], 1, IMG_H, IMG_W)
62 test_x = test_x.reshape(test_x.shape[0], 1, IMG_H, IMG_W)
63 elif (data_format is 'channels_last'):
64 train_x = train_x.reshape(train_x.shape[0], IMG_H, IMG_W, 1)
65 test_x = test_x.reshape(test_x.shape[0], IMG_H, IMG_W, 1)
66 else:
67 raise DataFormatException(data_format)
68

69 # Convert to float32
70 train_x = train_x.astype('float32')
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71 test_x = test_x.astype('float32')
72

73 dbg_print('train_x.shape: {}'.format(train_x.shape))
74 dbg_print('train_y.shape: {}'.format(train_y.shape))
75 dbg_print('test_x.shape : {}'.format(test_x.shape))
76 dbg_print('test_y.shape : {}'.format(test_y.shape))
77

78 # Convert class vectors to binary class matrices
79 train_y = np_utils.to_categorical(train_y, 10)
80 test_y = np_utils.to_categorical(test_y, 10)
81

82 # Invert images (from white on black to black on white)
83 train_x = 255 - train_x
84 test_x = 255 - test_x
85

86 return train_x, train_y, test_x, test_y
87

88 def get_weights() -> dict:
89 # Initialize weights dict
90 weights = dict()
91

92 # Open weights file
93 f = h5py.File(WEIGHTS_FILE, 'r')
94

95 # Iterate over layers (reshape is needed because of format divergence between HeteroCL and Keras
weights)↪→

96 weights['conv1'] = np.asarray( f['conv1']['conv1']['kernel:0'],
dtype='float32').transpose(3,2,0,1)#.reshape( (4,1,3,3))↪→

97 weights['conv2'] = np.asarray( f['conv2']['conv2']['kernel:0'],
dtype='float32').transpose(3,2,0,1)#.reshape( (4,4,3,3))↪→

98 weights['conv3'] = np.asarray( f['conv3']['conv3']['kernel:0'],
dtype='float32').transpose(3,2,0,1)#.reshape( (8,4,3,3))↪→

99 weights['conv4'] = np.asarray( f['conv4']['conv4']['kernel:0'],
dtype='float32').transpose(3,2,0,1)#.reshape( (8,8,3,3))↪→

100 weights['conv5'] = np.asarray( f['conv5']['conv5']['kernel:0'],
dtype='float32').transpose(3,2,0,1)#.reshape((16, 8,3,3))↪→

101 weights['conv6'] = np.asarray( f['conv6']['conv6']['kernel:0'],
dtype='float32').transpose(3,2,0,1)#.reshape((16,16,3,3))↪→

102 weights['dense_1'] = np.asarray(f['dense_1']['dense_1']['kernel:0'], dtype='float32')
103

104 dbg_print('weights:')
105 for key in weights.keys():
106 dbg_print(' {}: {}'.format(key, weights[key].shape))
107

108 return weights
109

110 def build_mnist(input_image, w_conv1, w_conv2, w_conv3, w_conv4, w_conv5, w_conv6, w_dense1, output):
111 # First convolutional layer
112 conv1 = hlib.nn.conv2d_nchw(input_image, w_conv1, padding='SAME', name='conv1')
113 dbg_print(conv1)
114 relu1 = hlib.nn.relu(conv1, name='relu1')
115 dbg_print(relu1)
116

117 # Second convolutional layer
118 conv2 = hlib.nn.conv2d_nchw(relu1, w_conv2, padding='SAME', name='conv2')
119 dbg_print(conv2)
120 relu2 = hlib.nn.relu(conv2, name='relu2')
121 dbg_print(relu2)
122

123 # First max pooling
124 pool1 = hlib.nn.max_pool(relu2, kernel=(2,2), stride=(2,2), name='pool1')
125 dbg_print(pool1)
126

127 # Third convolutional layer
128 conv3 = hlib.nn.conv2d_nchw(pool1, w_conv3, padding='SAME', name='conv3')
129 dbg_print(conv3)
130 relu3 = hlib.nn.relu(conv3, name='relu3')
131 dbg_print(relu3)
132

133 # Fourth convolutional layer
134 conv4 = hlib.nn.conv2d_nchw(relu3, w_conv4, padding='SAME', name='conv4')
135 dbg_print(conv4)
136 relu4 = hlib.nn.relu(conv4, name='relu4')
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137 dbg_print(relu4)
138

139 # Second max pooling
140 pool2 = hlib.nn.max_pool(relu4, kernel=(2,2), stride=(2,2), name='pool2')
141 dbg_print(pool2)
142

143 # Fifth convolutional layer
144 conv5 = hlib.nn.conv2d_nchw(pool2, w_conv5, padding='SAME', name='conv5')
145 dbg_print(conv5)
146 relu5 = hlib.nn.relu(conv5, name='relu5')
147 dbg_print(relu5)
148

149 # Sixth convolutional layer
150 conv6 = hlib.nn.conv2d_nchw(relu5, w_conv6, padding='SAME', name='conv6')
151 dbg_print(conv6)
152 relu6 = hlib.nn.relu(conv6, name='relu6')
153 dbg_print(relu6)
154

155 # Third max pooling
156 pool3 = global_max_pool(relu6, name='pool3')
157 dbg_print(pool3)
158

159 # Output layer
160 dense1 = hlib.nn.dense(pool3, w_dense1, name='dense1')
161 dbg_print(dense1)
162

163 return hlib.nn.softmax(output, dense1)
164

165 def build_mnist_inf(batch_size, weights, qtype1, qtype2, target=None):
166 # Set placeholders
167 input_image = hcl.placeholder((batch_size,1,IMG_H,IMG_W), name='input')
168 w_conv1 = hcl.placeholder( weights['conv1'].shape, name='w_conv1', dtype=qtype1)
169 w_conv2 = hcl.placeholder( weights['conv2'].shape, name='w_conv2', dtype=qtype1)
170 w_conv3 = hcl.placeholder( weights['conv3'].shape, name='w_conv3', dtype=qtype1)
171 w_conv4 = hcl.placeholder( weights['conv4'].shape, name='w_conv4', dtype=qtype1)
172 w_conv5 = hcl.placeholder( weights['conv5'].shape, name='w_conv5', dtype=qtype1)
173 w_conv6 = hcl.placeholder( weights['conv6'].shape, name='w_conv6', dtype=qtype1)
174 w_dense1 = hcl.placeholder( weights['dense_1'].shape, name='w_dense1', dtype=qtype1)
175 output = hcl.placeholder((batch_size,10), name='output')
176

177 # Create quantization scheme
178 scheme = hcl.create_scheme(
179 [input_image, w_conv1, w_conv2, w_conv3, w_conv4, w_conv5, w_conv6, w_dense1, output],
180 build_mnist
181 )
182

183 # Quantize activation layers
184 scheme.quantize(
185 [build_mnist.relu1, build_mnist.relu2, build_mnist.relu3, build_mnist.relu4, build_mnist.relu5,

build_mnist.relu6],↪→

186 qtype2
187 )
188

189 s = hcl.create_schedule_from_scheme(scheme)
190

191 return hcl.build(s, target=target)
192

193

194 def export_weights(weights):
195 import os
196 import shutil
197 import sys
198

199 if (os.path.exists('weights')):
200 shutil.rmtree('weights')
201 os.mkdir('weights')
202

203 for name in weights.keys():
204 s = str()
205 data = weights[name]
206 s += 'const static float w_{}'.format(name)
207 for dim in data.shape:
208 s += '[{}]'.format(dim)
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209 s += ' = \n'
210 s += '{}'.format(np.array2string(data, max_line_width=80, separator=',',

threshold=sys.maxsize).replace('[', '{').replace(']', '}'))↪→

211 s += ';'
212

213 file = open('weights/w_{}.h'.format(name), 'w')
214 file.write(s)
215 file.close()
216

217

218 def get_accuracy(weights, qtype1, qtype2):
219 batch_size = 1
220 accuracy = 0
221

222 print('Using qtype1={}, qtype2={}'.format(qtype1, qtype2))
223

224 f = build_mnist_inf(batch_size, weights, qtype1, qtype2)
225

226 # Prepare numpy weights for testing
227 w_conv1_hcl = hcl.asarray( weights['conv1'], dtype=qtype1)
228 w_conv2_hcl = hcl.asarray( weights['conv2'], dtype=qtype1)
229 w_conv3_hcl = hcl.asarray( weights['conv3'], dtype=qtype1)
230 w_conv4_hcl = hcl.asarray( weights['conv4'], dtype=qtype1)
231 w_conv5_hcl = hcl.asarray( weights['conv5'], dtype=qtype1)
232 w_conv6_hcl = hcl.asarray( weights['conv6'], dtype=qtype1)
233 w_dense1_hcl = hcl.asarray(weights['dense_1'], dtype=qtype1)
234

235 _, _, test_x, test_y = load_mnist_data()
236

237 for i in range(len(test_x) // batch_size):
238 label = np.argmax(test_y[i*batch_size:(i+1)*batch_size], axis=1)
239 input_image_np = test_x[i*batch_size:(i+1)*batch_size]
240 input_image_hcl = hcl.asarray(input_image_np)
241 output_hcl = hcl.asarray(np.zeros((batch_size,10)))
242

243 f(input_image_hcl,
244 w_conv1_hcl, w_conv2_hcl, w_conv3_hcl, w_conv4_hcl, w_conv5_hcl, w_conv6_hcl, w_dense1_hcl,
245 output_hcl)
246

247 prediction = np.argmax(output_hcl.asnumpy(), axis=1)
248 accuracy += np.sum(np.equal(prediction, label))
249

250 print("-> Testing accuracy: {}%".format(accuracy / len(test_x) * 100.0))
251

252 # Get Vivado HLS code
253 f = build_mnist_inf(batch_size, weights, qtype1, qtype2, target='vhls')
254

255 file = open('hls_fp{}.cpp'.format(qtype2.bits), 'w')
256

257 file.write('/**\n')
258 file.write(' * Testing accuracy: {}\n'.format(float(accuracy / float(len(test_x)))))
259 file.write(' */\n\n')
260 file.write(f)
261

262 file.close()
263

264 def main():
265 weights = get_weights()
266

267 if False:
268 qtypes = [hcl.Fixed(32,30), hcl.Fixed(16,14), hcl.Fixed(8,6), hcl.Fixed(4,2)]
269

270 for qtype in qtypes:
271 get_accuracy(weights, hcl.Float(), qtype)
272

273 else:
274 export_weights(weights)
275

276 if __name__ == '__main__':
277 main()
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D src/python/hls_fp32.cpp

1 /**
2 * Testing accuracy: 0.9726
3 */
4

5 #include <ap_int.h>
6 #include <ap_fixed.h>
7 #include <math.h>
8

9 void default_function(float input[1][1][28][28], float w_conv1[4][1][3][3], float w_conv2[4][4][3][3],
float w_conv3[8][4][3][3], float w_conv4[8][8][3][3], float w_conv5[16][8][3][3], float
w_conv6[16][16][3][3], float w_dense1[16][10], float output[1][10]) {

↪→

↪→

10 float pad_temp[1][1][30][30];
11 for (ap_int<32> index_tuple = 0; index_tuple < 30; ++index_tuple) {
12 for (ap_int<32> i = 0; i < 30; ++i) {
13 pad_temp[0][0][index_tuple][i] = (((((1 <= index_tuple) && (index_tuple < 29)) && (1 <= i)) && (i

< 29)) ? input[((((i - ((i + -1) % 28)) + (index_tuple * 28)) + -29) / 784)][0][(((((i - ((i
+ -1) % 28)) + (index_tuple * 28)) + -29) / 28) % 28)][((i + -1) % 28)] : 0.000000e+00f);

↪→

↪→

14 }
15 }
16 float conv1[1][4][28][28];
17 for (ap_int<32> ff = 0; ff < 4; ++ff) {
18 for (ap_int<32> yy = 0; yy < 28; ++yy) {
19 for (ap_int<32> xx = 0; xx < 28; ++xx) {
20 float reducer36;
21 reducer36 = 0.000000e+00f;
22 for (ap_int<32> ry = 0; ry < 3; ++ry) {
23 for (ap_int<32> rx = 0; rx < 3; ++rx) {
24 reducer36 = ((pad_temp[0][0][(yy + ry)][(xx + rx)] * w_conv1[ff][0][ry][rx]) + reducer36);
25 }
26 }
27 conv1[0][ff][yy][xx] = reducer36;
28 }
29 }
30 }
31 ap_fixed<32, 2> relu1[1][4][28][28];
32 for (ap_int<32> args = 0; args < 1; ++args) {
33 for (ap_int<32> args0 = 0; args0 < 4; ++args0) {
34 for (ap_int<32> args1 = 0; args1 < 28; ++args1) {
35 for (ap_int<32> args2 = 0; args2 < 28; ++args2) {
36 relu1[args][args0][args1][args2] = ((ap_fixed<32, 2>)((conv1[args][args0][args1][args2] <

0.000000e+00f) ? 0.000000e+00f : conv1[args][args0][args1][args2]));↪→

37 }
38 }
39 }
40 }
41 float pad_temp1[1][4][30][30];
42 for (ap_int<32> not_zero = 0; not_zero < 4; ++not_zero) {
43 for (ap_int<32> index_tuple1 = 0; index_tuple1 < 30; ++index_tuple1) {
44 for (ap_int<32> i1 = 0; i1 < 30; ++i1) {
45 pad_temp1[0][not_zero][index_tuple1][i1] = (((((1 <= index_tuple1) && (index_tuple1 < 29)) &&

(1 <= i1)) && (i1 < 29)) ? ((float)relu1[(((((i1 - ((i1 + -1) % 28)) + (index_tuple1 *
28)) + (not_zero * 784)) + -29) / 3136)][((((((i1 - ((i1 + -1) % 28)) + (index_tuple1 *
28)) + (not_zero * 784)) + -29) / 784) % 4)][((((((i1 - ((i1 + -1) % 28)) + (index_tuple1
* 28)) + (not_zero * 784)) + -29) / 28) % 28)][((i1 + -1) % 28)]) : 0.000000e+00f);

↪→

↪→

↪→

↪→

46 }
47 }
48 }
49 float conv2[1][4][28][28];
50 for (ap_int<32> ff1 = 0; ff1 < 4; ++ff1) {
51 for (ap_int<32> yy1 = 0; yy1 < 28; ++yy1) {
52 for (ap_int<32> xx1 = 0; xx1 < 28; ++xx1) {
53 ap_fixed<32, 2> reducer37;
54 reducer37 = ((ap_fixed<32, 2>)0);
55 for (ap_int<32> rc = 0; rc < 4; ++rc) {
56 for (ap_int<32> ry1 = 0; ry1 < 3; ++ry1) {
57 for (ap_int<32> rx1 = 0; rx1 < 3; ++rx1) {
58 reducer37 = ((ap_fixed<32, 2>)(((ap_fixed<65, 5>)(((ap_fixed<64, 34>)((ap_fixed<32,

2>)pad_temp1[0][rc][(yy1 + ry1)][(xx1 + rx1)])) * ((ap_fixed<64, 34>)((ap_fixed<32,
2>)w_conv2[ff1][rc][ry1][rx1])))) + ((ap_fixed<65, 5>)reducer37)));

↪→

↪→

59 }
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60 }
61 }
62 conv2[0][ff1][yy1][xx1] = ((float)reducer37);
63 }
64 }
65 }
66 ap_fixed<32, 2> relu2[1][4][28][28];
67 for (ap_int<32> args3 = 0; args3 < 1; ++args3) {
68 for (ap_int<32> args01 = 0; args01 < 4; ++args01) {
69 for (ap_int<32> args11 = 0; args11 < 28; ++args11) {
70 for (ap_int<32> args21 = 0; args21 < 28; ++args21) {
71 relu2[args3][args01][args11][args21] = ((ap_fixed<32,

2>)((conv2[args3][args01][args11][args21] < 0.000000e+00f) ? 0.000000e+00f :
conv2[args3][args01][args11][args21]));

↪→

↪→

72 }
73 }
74 }
75 }
76 float pool1[1][4][14][14];
77 for (ap_int<32> i2 = 0; i2 < 1; ++i2) {
78 for (ap_int<32> c = 0; c < 4; ++c) {
79 for (ap_int<32> h = 0; h < 14; ++h) {
80 for (ap_int<32> w = 0; w < 14; ++w) {
81 float reducer38;
82 reducer38 = -1.000000e+00f;
83 for (ap_int<32> ra27 = 0; ra27 < 2; ++ra27) {
84 for (ap_int<32> ra28 = 0; ra28 < 2; ++ra28) {
85 reducer38 = std::max(((float)relu2[i2][c][((h * 2) + ra27)][((w * 2) + ra28)]),

reducer38);↪→

86 }
87 }
88 pool1[i2][c][h][w] = reducer38;
89 }
90 }
91 }
92 }
93 float pad_temp2[1][4][16][16];
94 for (ap_int<32> not_zero1 = 0; not_zero1 < 4; ++not_zero1) {
95 for (ap_int<32> index_tuple2 = 0; index_tuple2 < 16; ++index_tuple2) {
96 for (ap_int<32> i3 = 0; i3 < 16; ++i3) {
97 pad_temp2[0][not_zero1][index_tuple2][i3] = (((((1 <= index_tuple2) && (index_tuple2 < 15)) &&

(1 <= i3)) && (i3 < 15)) ? pool1[(((((i3 - ((i3 + -1) % 14)) + (index_tuple2 * 14)) +
(not_zero1 * 196)) + -15) / 784)][((((((i3 - ((i3 + -1) % 14)) + (index_tuple2 * 14)) +
(not_zero1 * 196)) + -15) / 196) % 4)][((((((i3 - ((i3 + -1) % 14)) + (index_tuple2 * 14))
+ (not_zero1 * 196)) + -15) / 14) % 14)][((i3 + -1) % 14)] : 0.000000e+00f);

↪→

↪→

↪→

↪→

98 }
99 }

100 }
101 float conv3[1][8][14][14];
102 for (ap_int<32> ff2 = 0; ff2 < 8; ++ff2) {
103 for (ap_int<32> yy2 = 0; yy2 < 14; ++yy2) {
104 for (ap_int<32> xx2 = 0; xx2 < 14; ++xx2) {
105 float reducer39;
106 reducer39 = 0.000000e+00f;
107 for (ap_int<32> rc1 = 0; rc1 < 4; ++rc1) {
108 for (ap_int<32> ry2 = 0; ry2 < 3; ++ry2) {
109 for (ap_int<32> rx2 = 0; rx2 < 3; ++rx2) {
110 reducer39 = ((pad_temp2[0][rc1][(yy2 + ry2)][(xx2 + rx2)] * w_conv3[ff2][rc1][ry2][rx2])

+ reducer39);↪→

111 }
112 }
113 }
114 conv3[0][ff2][yy2][xx2] = reducer39;
115 }
116 }
117 }
118 ap_fixed<32, 2> relu3[1][8][14][14];
119 for (ap_int<32> args4 = 0; args4 < 1; ++args4) {
120 for (ap_int<32> args02 = 0; args02 < 8; ++args02) {
121 for (ap_int<32> args12 = 0; args12 < 14; ++args12) {
122 for (ap_int<32> args22 = 0; args22 < 14; ++args22) {
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123 relu3[args4][args02][args12][args22] = ((ap_fixed<32,
2>)((conv3[args4][args02][args12][args22] < 0.000000e+00f) ? 0.000000e+00f :
conv3[args4][args02][args12][args22]));

↪→

↪→

124 }
125 }
126 }
127 }
128 float pad_temp3[1][8][16][16];
129 for (ap_int<32> not_zero2 = 0; not_zero2 < 8; ++not_zero2) {
130 for (ap_int<32> index_tuple3 = 0; index_tuple3 < 16; ++index_tuple3) {
131 for (ap_int<32> i4 = 0; i4 < 16; ++i4) {
132 pad_temp3[0][not_zero2][index_tuple3][i4] = (((((1 <= index_tuple3) && (index_tuple3 < 15)) &&

(1 <= i4)) && (i4 < 15)) ? ((float)relu3[(((((i4 - ((i4 + -1) % 14)) + (index_tuple3 *
14)) + (not_zero2 * 196)) + -15) / 1568)][((((((i4 - ((i4 + -1) % 14)) + (index_tuple3 *
14)) + (not_zero2 * 196)) + -15) / 196) % 8)][((((((i4 - ((i4 + -1) % 14)) + (index_tuple3
* 14)) + (not_zero2 * 196)) + -15) / 14) % 14)][((i4 + -1) % 14)]) : 0.000000e+00f);

↪→

↪→

↪→

↪→

133 }
134 }
135 }
136 float conv4[1][8][14][14];
137 for (ap_int<32> ff3 = 0; ff3 < 8; ++ff3) {
138 for (ap_int<32> yy3 = 0; yy3 < 14; ++yy3) {
139 for (ap_int<32> xx3 = 0; xx3 < 14; ++xx3) {
140 ap_fixed<32, 2> reducer40;
141 reducer40 = ((ap_fixed<32, 2>)0);
142 for (ap_int<32> rc2 = 0; rc2 < 8; ++rc2) {
143 for (ap_int<32> ry3 = 0; ry3 < 3; ++ry3) {
144 for (ap_int<32> rx3 = 0; rx3 < 3; ++rx3) {
145 reducer40 = ((ap_fixed<32, 2>)(((ap_fixed<65, 5>)(((ap_fixed<64, 34>)((ap_fixed<32,

2>)pad_temp3[0][rc2][(yy3 + ry3)][(xx3 + rx3)])) * ((ap_fixed<64, 34>)((ap_fixed<32,
2>)w_conv4[ff3][rc2][ry3][rx3])))) + ((ap_fixed<65, 5>)reducer40)));

↪→

↪→

146 }
147 }
148 }
149 conv4[0][ff3][yy3][xx3] = ((float)reducer40);
150 }
151 }
152 }
153 ap_fixed<32, 2> relu4[1][8][14][14];
154 for (ap_int<32> args5 = 0; args5 < 1; ++args5) {
155 for (ap_int<32> args03 = 0; args03 < 8; ++args03) {
156 for (ap_int<32> args13 = 0; args13 < 14; ++args13) {
157 for (ap_int<32> args23 = 0; args23 < 14; ++args23) {
158 relu4[args5][args03][args13][args23] = ((ap_fixed<32,

2>)((conv4[args5][args03][args13][args23] < 0.000000e+00f) ? 0.000000e+00f :
conv4[args5][args03][args13][args23]));

↪→

↪→

159 }
160 }
161 }
162 }
163 float pool2[1][8][7][7];
164 for (ap_int<32> i5 = 0; i5 < 1; ++i5) {
165 for (ap_int<32> c1 = 0; c1 < 8; ++c1) {
166 for (ap_int<32> h1 = 0; h1 < 7; ++h1) {
167 for (ap_int<32> w1 = 0; w1 < 7; ++w1) {
168 float reducer41;
169 reducer41 = -1.000000e+00f;
170 for (ap_int<32> ra29 = 0; ra29 < 2; ++ra29) {
171 for (ap_int<32> ra30 = 0; ra30 < 2; ++ra30) {
172 reducer41 = std::max(((float)relu4[i5][c1][((h1 * 2) + ra29)][((w1 * 2) + ra30)]),

reducer41);↪→

173 }
174 }
175 pool2[i5][c1][h1][w1] = reducer41;
176 }
177 }
178 }
179 }
180 float pad_temp4[1][8][9][9];
181 for (ap_int<32> not_zero3 = 0; not_zero3 < 8; ++not_zero3) {
182 for (ap_int<32> index_tuple4 = 0; index_tuple4 < 9; ++index_tuple4) {
183 for (ap_int<32> i6 = 0; i6 < 9; ++i6) {
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184 pad_temp4[0][not_zero3][index_tuple4][i6] = (((((1 <= index_tuple4) && (index_tuple4 < 8)) &&
(1 <= i6)) && (i6 < 8)) ? pool2[(((((i6 - ((i6 + -1) % 7)) + (index_tuple4 * 7)) +
(not_zero3 * 49)) + -8) / 392)][((((((i6 - ((i6 + -1) % 7)) + (index_tuple4 * 7)) +
(not_zero3 * 49)) + -8) / 49) % 8)][((((((i6 - ((i6 + -1) % 7)) + (index_tuple4 * 7)) +
(not_zero3 * 49)) + -8) / 7) % 7)][((i6 + -1) % 7)] : 0.000000e+00f);

↪→

↪→

↪→

↪→

185 }
186 }
187 }
188 float conv5[1][16][7][7];
189 for (ap_int<32> ff4 = 0; ff4 < 16; ++ff4) {
190 for (ap_int<32> yy4 = 0; yy4 < 7; ++yy4) {
191 for (ap_int<32> xx4 = 0; xx4 < 7; ++xx4) {
192 float reducer42;
193 reducer42 = 0.000000e+00f;
194 for (ap_int<32> rc3 = 0; rc3 < 8; ++rc3) {
195 for (ap_int<32> ry4 = 0; ry4 < 3; ++ry4) {
196 for (ap_int<32> rx4 = 0; rx4 < 3; ++rx4) {
197 reducer42 = ((pad_temp4[0][rc3][(yy4 + ry4)][(xx4 + rx4)] * w_conv5[ff4][rc3][ry4][rx4])

+ reducer42);↪→

198 }
199 }
200 }
201 conv5[0][ff4][yy4][xx4] = reducer42;
202 }
203 }
204 }
205 ap_fixed<32, 2> relu5[1][16][7][7];
206 for (ap_int<32> args6 = 0; args6 < 1; ++args6) {
207 for (ap_int<32> args04 = 0; args04 < 16; ++args04) {
208 for (ap_int<32> args14 = 0; args14 < 7; ++args14) {
209 for (ap_int<32> args24 = 0; args24 < 7; ++args24) {
210 relu5[args6][args04][args14][args24] = ((ap_fixed<32,

2>)((conv5[args6][args04][args14][args24] < 0.000000e+00f) ? 0.000000e+00f :
conv5[args6][args04][args14][args24]));

↪→

↪→

211 }
212 }
213 }
214 }
215 float pad_temp5[1][16][9][9];
216 for (ap_int<32> not_zero4 = 0; not_zero4 < 16; ++not_zero4) {
217 for (ap_int<32> index_tuple5 = 0; index_tuple5 < 9; ++index_tuple5) {
218 for (ap_int<32> i7 = 0; i7 < 9; ++i7) {
219 pad_temp5[0][not_zero4][index_tuple5][i7] = (((((1 <= index_tuple5) && (index_tuple5 < 8)) &&

(1 <= i7)) && (i7 < 8)) ? ((float)relu5[(((((i7 - ((i7 + -1) % 7)) + (index_tuple5 * 7)) +
(not_zero4 * 49)) + -8) / 784)][((((((i7 - ((i7 + -1) % 7)) + (index_tuple5 * 7)) +
(not_zero4 * 49)) + -8) / 49) % 16)][((((((i7 - ((i7 + -1) % 7)) + (index_tuple5 * 7)) +
(not_zero4 * 49)) + -8) / 7) % 7)][((i7 + -1) % 7)]) : 0.000000e+00f);

↪→

↪→

↪→

↪→

220 }
221 }
222 }
223 float conv6[1][16][7][7];
224 for (ap_int<32> ff5 = 0; ff5 < 16; ++ff5) {
225 for (ap_int<32> yy5 = 0; yy5 < 7; ++yy5) {
226 for (ap_int<32> xx5 = 0; xx5 < 7; ++xx5) {
227 ap_fixed<32, 2> reducer43;
228 reducer43 = ((ap_fixed<32, 2>)0);
229 for (ap_int<32> rc4 = 0; rc4 < 16; ++rc4) {
230 for (ap_int<32> ry5 = 0; ry5 < 3; ++ry5) {
231 for (ap_int<32> rx5 = 0; rx5 < 3; ++rx5) {
232 reducer43 = ((ap_fixed<32, 2>)(((ap_fixed<65, 5>)(((ap_fixed<64, 34>)((ap_fixed<32,

2>)pad_temp5[0][rc4][(yy5 + ry5)][(xx5 + rx5)])) * ((ap_fixed<64, 34>)((ap_fixed<32,
2>)w_conv6[ff5][rc4][ry5][rx5])))) + ((ap_fixed<65, 5>)reducer43)));

↪→

↪→

233 }
234 }
235 }
236 conv6[0][ff5][yy5][xx5] = ((float)reducer43);
237 }
238 }
239 }
240 ap_fixed<32, 2> relu6[1][16][7][7];
241 for (ap_int<32> args7 = 0; args7 < 1; ++args7) {
242 for (ap_int<32> args05 = 0; args05 < 16; ++args05) {
243 for (ap_int<32> args15 = 0; args15 < 7; ++args15) {
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244 for (ap_int<32> args25 = 0; args25 < 7; ++args25) {
245 relu6[args7][args05][args15][args25] = ((ap_fixed<32,

2>)((conv6[args7][args05][args15][args25] < 0.000000e+00f) ? 0.000000e+00f :
conv6[args7][args05][args15][args25]));

↪→

↪→

246 }
247 }
248 }
249 }
250 float max_pool[1][16][1][1];
251 for (ap_int<32> i8 = 0; i8 < 1; ++i8) {
252 for (ap_int<32> c2 = 0; c2 < 16; ++c2) {
253 float reducer44;
254 reducer44 = -1.000000e+00f;
255 for (ap_int<32> ra31 = 0; ra31 < 7; ++ra31) {
256 for (ap_int<32> ra32 = 0; ra32 < 7; ++ra32) {
257 reducer44 = std::max(((float)relu6[i8][c2][ra31][ra32]), reducer44);
258 }
259 }
260 max_pool[i8][c2][0][0] = reducer44;
261 }
262 }
263 ap_fixed<32, 2> pool3[1][16];
264 for (ap_int<32> i9 = 0; i9 < 1; ++i9) {
265 for (ap_int<32> c3 = 0; c3 < 16; ++c3) {
266 pool3[i9][c3] = ((ap_fixed<32, 2>)max_pool[i9][c3][0][0]);
267 }
268 }
269 float dense1[1][10];
270 for (ap_int<32> i10 = 0; i10 < 1; ++i10) {
271 for (ap_int<32> j = 0; j < 10; ++j) {
272 float reducer45;
273 reducer45 = 0.000000e+00f;
274 for (ap_int<32> ra33 = 0; ra33 < 16; ++ra33) {
275 reducer45 = ((((float)pool3[i10][ra33]) * w_dense1[ra33][j]) + reducer45);
276 }
277 dense1[i10][j] = reducer45;
278 }
279 }
280 float compute6;
281 float reducer46;
282 reducer46 = -1.000000e+00f;
283 for (ap_int<32> ra34 = 0; ra34 < 10; ++ra34) {
284 reducer46 = std::max(dense1[0][ra34], reducer46);
285 }
286 compute6 = reducer46;
287 float compute7;
288 float reducer47;
289 reducer47 = 0.000000e+00f;
290 for (ap_int<32> ra35 = 0; ra35 < 10; ++ra35) {
291 reducer47 = ((float)(exp(((double)(dense1[0][ra35] - compute6))) + ((double)reducer47)));
292 }
293 compute7 = reducer47;
294 float update3;
295 for (ap_int<32> j1 = 0; j1 < 10; ++j1) {
296 output[0][j1] = ((float)(exp(((double)(dense1[0][j1] - compute6))) / ((double)compute7)));
297 }
298 }
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E TensorFlow Lite C++ inference

1 #include <stdio.h>
2 #include <time.h>
3

4 #include "tensorflow/lite/interpreter.h"
5 #include "tensorflow/lite/kernels/register.h"
6 #include "tensorflow/lite/model.h"
7 #include "tensorflow/lite/optional_debug_tools.h"
8

9 using namespace tflite;
10

11 #define TFLITE_MINIMAL_CHECK(x) \
12 if (!(x)) { \
13 fprintf(stderr, "Error at %s:%d\n", __FILE__, __LINE__); \
14 exit(1); \
15 }
16

17 timespec diff(timespec start, timespec end) {
18 timespec temp;
19 if ((end.tv_nsec - start.tv_nsec) < 0) {
20 temp.tv_sec = end.tv_sec - start.tv_sec - 1;
21 temp.tv_nsec = 1000000000 + end.tv_nsec - start.tv_nsec;
22 } else {
23 temp.tv_sec = end.tv_sec - start.tv_sec;
24 temp.tv_nsec = end.tv_nsec - start.tv_nsec;
25 }
26

27 return temp;
28 }
29

30 int main(int argc, char* argv[]) {
31 timespec time1, time2;
32

33 if (argc != 2) {
34 fprintf(stderr, "minimal <tflite model>\n");
35 return 1;
36 }
37 const char* filename = argv[1];
38

39 // Load model
40 std::unique_ptr<tflite::FlatBufferModel> model =
41 tflite::FlatBufferModel::BuildFromFile(filename);
42 TFLITE_MINIMAL_CHECK(model != nullptr);
43

44 // Build the interpreter
45 tflite::ops::builtin::BuiltinOpResolver resolver;
46 InterpreterBuilder builder(*model, resolver);
47 std::unique_ptr<Interpreter> interpreter;
48 builder(&interpreter);
49 TFLITE_MINIMAL_CHECK(interpreter != nullptr);
50

51 // Allocate tensor buffers.
52 TFLITE_MINIMAL_CHECK(interpreter->AllocateTensors() == kTfLiteOk);
53

54 // Input tensor is 21
55 // Output tensor is 0
56

57 // Fill input buffers with black pixels
58 float* input = interpreter->typed_input_tensor<float>(21);
59 for (int i = 0; i < 784; ++i) {
60 input[i] = 0.0f;
61 }
62

63 // Run inference and measure time
64 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time1);
65 TFLITE_MINIMAL_CHECK(interpreter->Invoke() == kTfLiteOk);
66 clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &time2);
67

68 // Read output buffers
69 // Expected output is 0.1 for each output neuron
70 float *output = interpreter->typed_output_tensor<float>(0);
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71 printf("Output: [");
72 for (int i = 0; i < 10; ++i) {
73 printf(" %.5f", output[i]);
74 }
75 printf("]\n");
76 printf("Inference time: %ld s %ld ns\n", diff(time1, time2).tv_sec, diff(time1, time2).tv_nsec);
77

78 return 0;
79 }
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F vivado_hls/mnist_fp16-opt/src/mnist_fp16.cpp

1 /**
2 * Testing accuracy: 0.9728
3 */
4

5 #include <ap_int.h>
6 #include <ap_fixed.h>
7 #include <float.h>
8 #include <math.h>
9

10 #include <ap_axi_sdata.h>
11 #include <hls_video.h>
12

13 #include "w_conv1.h"
14 #include "w_conv2.h"
15 #include "w_conv3.h"
16 #include "w_conv4.h"
17 #include "w_conv5.h"
18 #include "w_conv6.h"
19 #include "w_dense_1.h"
20

21

22 typedef ap_axiu<32,1,1,1> pixel_t;
23 typedef hls::stream<pixel_t> stream_t;
24

25 typedef union {
26 unsigned int u;
27 float f;
28 } union_t;
29

30

31 void mnist_fp16_opt(stream_t& stream_in, ap_uint<4>& result) {
32 #pragma HLS INTERFACE ap_ctrl_hs port=return
33 #pragma HLS INTERFACE axis port=stream_in
34 #pragma HLS INTERFACE ap_vld port=result
35

36 float preds[1][10];
37 float image[1][1][28][28];
38 pixel_t pixel;
39 union_t uni;
40 HLS_SIZE_T i, j;
41

42 bool sof = 0;
43 loop_wait_sof: while (sof == 0) {
44 #pragma HLS LOOP_TRIPCOUNT avg=0 max=0
45 #pragma HLS PIPELINE II=1
46 stream_in >> pixel;
47 sof = pixel.user.to_int();
48 }
49

50 loop_height: for (i = 0; i < 28; ++i) {
51 bool eol = 0;
52

53 loop_width: for (j = 0; j < 28; ++j) {
54 #pragma HLS LOOP_FLATTEN off
55 #pragma HLS PIPELINE II=1
56 if (sof || eol) {
57 sof = 0;
58 eol = pixel.last.to_int();
59 }
60 else {
61 stream_in >> pixel;
62 eol = pixel.last.to_int();
63 }
64

65 uni.u = pixel.data.to_uint();
66 image[0][0][i][j] = uni.f;
67 }
68

69 loop_wait_eol: while (eol == 0) {
70 #pragma HLS PIPELINE II=1
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71 #pragma HLS LOOP_TRIPCOUNT avg=0 max=0
72 stream_in >> pixel;
73 eol = pixel.last.to_int();
74 }
75 }
76

77

78 float pad_temp[1][1][30][30];
79 pad1_h: for (ap_int<32> index_tuple = 0; index_tuple < 30; ++index_tuple) {
80 #pragma HLS PIPELINE
81 pad1_w: for (ap_int<32> i = 0; i < 30; ++i) {
82 #pragma HLS PIPELINE
83 pad_temp[0][0][index_tuple][i] = (((((1 <= index_tuple) && (index_tuple < 29)) && (1 <= i))

&& (i < 29)) ? image[((((i - ((i + -1) % 28)) + (index_tuple * 28)) + -29) /
784)][0][(((((i - ((i + -1) % 28)) + (index_tuple * 28)) + -29) / 28) % 28)][((i + -1)
% 28)] : 0.000000e+00f);

↪→

↪→

↪→

84 }
85 }
86 float conv1[1][4][28][28];
87 conv1_c: for (ap_int<32> ff = 0; ff < 4; ++ff) {
88 conv1_h: for (ap_int<32> yy = 0; yy < 28; ++yy) {
89 conv1_w: for (ap_int<32> xx = 0; xx < 28; ++xx) {
90 float reducer84;
91 reducer84 = 0.000000e+00f;
92 conv1_kh: for (ap_int<32> ry = 0; ry < 3; ++ry) {
93 conv1_kw: for (ap_int<32> rx = 0; rx < 3; ++rx) {
94 #pragma HLS PIPELINE
95 reducer84 = ((pad_temp[0][0][(yy + ry)][(xx + rx)] * w_conv1[ff][0][ry][rx]) +

reducer84);↪→

96 }
97 }
98 conv1[0][ff][yy][xx] = reducer84;
99 }

100 }
101 }
102 ap_fixed<16, 2> relu1[1][4][28][28];
103 relu1_n: for (ap_int<32> args = 0; args < 1; ++args) {
104 relu1_c: for (ap_int<32> args0 = 0; args0 < 4; ++args0) {
105 #pragma HLS PIPELINE
106 relu1_h: for (ap_int<32> args1 = 0; args1 < 28; ++args1) {
107 #pragma HLS PIPELINE
108 relu1_w: for (ap_int<32> args2 = 0; args2 < 28; ++args2) {
109 #pragma HLS PIPELINE
110 relu1[args][args0][args1][args2] = ((ap_fixed<16,

2>)((conv1[args][args0][args1][args2] < 0.000000e+00f) ? 0.000000e+00f :
conv1[args][args0][args1][args2]));

↪→

↪→

111 }
112 }
113 }
114 }
115

116

117 float pad_temp1[1][4][30][30];
118 pad2_c: for (ap_int<32> not_zero = 0; not_zero < 4; ++not_zero) {
119 // #pragma HLS PIPELINE
120 for (ap_int<32> index_tuple1 = 0; index_tuple1 < 30; ++index_tuple1) {
121 for (ap_int<32> i1 = 0; i1 < 30; ++i1) {
122 #pragma HLS PIPELINE
123 pad_temp1[0][not_zero][index_tuple1][i1] = (((((1 <= index_tuple1) && (index_tuple1 <

29)) && (1 <= i1)) && (i1 < 29)) ? ((float)relu1[(((((i1 - ((i1 + -1) % 28)) +
(index_tuple1 * 28)) + (not_zero * 784)) + -29) / 3136)][((((((i1 - ((i1 + -1) %
28)) + (index_tuple1 * 28)) + (not_zero * 784)) + -29) / 784) % 4)][((((((i1 -
((i1 + -1) % 28)) + (index_tuple1 * 28)) + (not_zero * 784)) + -29) / 28) %
28)][((i1 + -1) % 28)]) : 0.000000e+00f);

↪→

↪→

↪→

↪→

↪→

124 }
125 }
126 }
127 float conv2[1][4][28][28];
128 conv2_c: for (ap_int<32> ff1 = 0; ff1 < 4; ++ff1) {
129 for (ap_int<32> yy1 = 0; yy1 < 28; ++yy1) {
130 for (ap_int<32> xx1 = 0; xx1 < 28; ++xx1) {
131 ap_fixed<16, 2> reducer85;
132 reducer85 = ((ap_fixed<16, 2>)0);
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133 for (ap_int<32> rc = 0; rc < 4; ++rc) {
134 for (ap_int<32> ry1 = 0; ry1 < 3; ++ry1) {
135 for (ap_int<32> rx1 = 0; rx1 < 3; ++rx1) {
136 #pragma HLS PIPELINE
137 reducer85 = ((ap_fixed<16, 2>)(((ap_fixed<33, 5>)(((ap_fixed<32,

18>)((ap_fixed<16, 2>)pad_temp1[0][rc][(yy1 + ry1)][(xx1 + rx1)])) *
((ap_fixed<32, 18>)((ap_fixed<16, 2>)w_conv2[ff1][rc][ry1][rx1])))) +
((ap_fixed<33, 5>)reducer85)));

↪→

↪→

↪→

138 }
139 }
140 }
141 conv2[0][ff1][yy1][xx1] = ((float)reducer85);
142 }
143 }
144 }
145 ap_fixed<16, 2> relu2[1][4][28][28];
146 relu2_n: for (ap_int<32> args3 = 0; args3 < 1; ++args3) {
147 relu2_c: for (ap_int<32> args01 = 0; args01 < 4; ++args01) {
148 for (ap_int<32> args11 = 0; args11 < 28; ++args11) {
149 #pragma HLS PIPELINE
150 for (ap_int<32> args21 = 0; args21 < 28; ++args21) {
151 #pragma HLS PIPELINE
152 relu2[args3][args01][args11][args21] = ((ap_fixed<16,

2>)((conv2[args3][args01][args11][args21] < 0.000000e+00f) ? 0.000000e+00f :
conv2[args3][args01][args11][args21]));

↪→

↪→

153 }
154 }
155 }
156 }
157 float pool1[1][4][14][14];
158 pool1_n: for (ap_int<32> i2 = 0; i2 < 1; ++i2) {
159 pool1_c: for (ap_int<32> c = 0; c < 4; ++c) {
160 for (ap_int<32> h = 0; h < 14; ++h) {
161 for (ap_int<32> w = 0; w < 14; ++w) {
162 float reducer86;
163 reducer86 = -1.000000e+00f;
164 for (ap_int<32> ra63 = 0; ra63 < 2; ++ra63) {
165 #pragma HLS PIPELINE
166 for (ap_int<32> ra64 = 0; ra64 < 2; ++ra64) {
167 #pragma HLS PIPELINE
168 reducer86 = std::max(((float)relu2[i2][c][((h * 2) + ra63)][((w * 2) +

ra64)]), reducer86);↪→

169 }
170 }
171 pool1[i2][c][h][w] = reducer86;
172 }
173 }
174 }
175 }
176

177

178 float pad_temp2[1][4][16][16];
179 pad3_c: for (ap_int<32> not_zero1 = 0; not_zero1 < 4; ++not_zero1) {
180 for (ap_int<32> index_tuple2 = 0; index_tuple2 < 16; ++index_tuple2) {
181 #pragma HLS PIPELINE
182 for (ap_int<32> i3 = 0; i3 < 16; ++i3) {
183 #pragma HLS PIPELINE
184 pad_temp2[0][not_zero1][index_tuple2][i3] = (((((1 <= index_tuple2) && (index_tuple2 <

15)) && (1 <= i3)) && (i3 < 15)) ? pool1[(((((i3 - ((i3 + -1) % 14)) +
(index_tuple2 * 14)) + (not_zero1 * 196)) + -15) / 784)][((((((i3 - ((i3 + -1) %
14)) + (index_tuple2 * 14)) + (not_zero1 * 196)) + -15) / 196) % 4)][((((((i3 -
((i3 + -1) % 14)) + (index_tuple2 * 14)) + (not_zero1 * 196)) + -15) / 14) %
14)][((i3 + -1) % 14)] : 0.000000e+00f);

↪→

↪→

↪→

↪→

↪→

185 }
186 }
187 }
188 float conv3[1][8][14][14];
189 conv3_c: for (ap_int<32> ff2 = 0; ff2 < 8; ++ff2) {
190 for (ap_int<32> yy2 = 0; yy2 < 14; ++yy2) {
191 for (ap_int<32> xx2 = 0; xx2 < 14; ++xx2) {
192 float reducer87;
193 reducer87 = 0.000000e+00f;
194 for (ap_int<32> rc1 = 0; rc1 < 4; ++rc1) {
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195 for (ap_int<32> ry2 = 0; ry2 < 3; ++ry2) {
196 for (ap_int<32> rx2 = 0; rx2 < 3; ++rx2) {
197 #pragma HLS PIPELINE
198 reducer87 = ((pad_temp2[0][rc1][(yy2 + ry2)][(xx2 + rx2)] *

w_conv3[ff2][rc1][ry2][rx2]) + reducer87);↪→

199 }
200 }
201 }
202 conv3[0][ff2][yy2][xx2] = reducer87;
203 }
204 }
205 }
206 ap_fixed<16, 2> relu3[1][8][14][14];
207 relu3_n: for (ap_int<32> args4 = 0; args4 < 1; ++args4) {
208 relu3_c: for (ap_int<32> args02 = 0; args02 < 8; ++args02) {
209 for (ap_int<32> args12 = 0; args12 < 14; ++args12) {
210 #pragma HLS PIPELINE
211 for (ap_int<32> args22 = 0; args22 < 14; ++args22) {
212 #pragma HLS PIPELINE
213 relu3[args4][args02][args12][args22] = ((ap_fixed<16,

2>)((conv3[args4][args02][args12][args22] < 0.000000e+00f) ? 0.000000e+00f :
conv3[args4][args02][args12][args22]));

↪→

↪→

214 }
215 }
216 }
217 }
218

219

220 float pad_temp3[1][8][16][16];
221 pad4_c: for (ap_int<32> not_zero2 = 0; not_zero2 < 8; ++not_zero2) {
222 for (ap_int<32> index_tuple3 = 0; index_tuple3 < 16; ++index_tuple3) {
223 for (ap_int<32> i4 = 0; i4 < 16; ++i4) {
224 #pragma HLS PIPELINE
225 pad_temp3[0][not_zero2][index_tuple3][i4] = (((((1 <= index_tuple3) && (index_tuple3 <

15)) && (1 <= i4)) && (i4 < 15)) ? ((float)relu3[(((((i4 - ((i4 + -1) % 14)) +
(index_tuple3 * 14)) + (not_zero2 * 196)) + -15) / 1568)][((((((i4 - ((i4 + -1) %
14)) + (index_tuple3 * 14)) + (not_zero2 * 196)) + -15) / 196) % 8)][((((((i4 -
((i4 + -1) % 14)) + (index_tuple3 * 14)) + (not_zero2 * 196)) + -15) / 14) %
14)][((i4 + -1) % 14)]) : 0.000000e+00f);

↪→

↪→

↪→

↪→

↪→

226 }
227 }
228 }
229 float conv4[1][8][14][14];
230 conv4_c: for (ap_int<32> ff3 = 0; ff3 < 8; ++ff3) {
231 for (ap_int<32> yy3 = 0; yy3 < 14; ++yy3) {
232 for (ap_int<32> xx3 = 0; xx3 < 14; ++xx3) {
233 ap_fixed<16, 2> reducer88;
234 reducer88 = ((ap_fixed<16, 2>)0);
235 for (ap_int<32> rc2 = 0; rc2 < 8; ++rc2) {
236 for (ap_int<32> ry3 = 0; ry3 < 3; ++ry3) {
237 for (ap_int<32> rx3 = 0; rx3 < 3; ++rx3) {
238 #pragma HLS PIPELINE
239 reducer88 = ((ap_fixed<16, 2>)(((ap_fixed<33, 5>)(((ap_fixed<32,

18>)((ap_fixed<16, 2>)pad_temp3[0][rc2][(yy3 + ry3)][(xx3 + rx3)])) *
((ap_fixed<32, 18>)((ap_fixed<16, 2>)w_conv4[ff3][rc2][ry3][rx3])))) +
((ap_fixed<33, 5>)reducer88)));

↪→

↪→

↪→

240 }
241 }
242 }
243 conv4[0][ff3][yy3][xx3] = ((float)reducer88);
244 }
245 }
246 }
247 ap_fixed<16, 2> relu4[1][8][14][14];
248 relu4_n: for (ap_int<32> args5 = 0; args5 < 1; ++args5) {
249 relu4_c: for (ap_int<32> args03 = 0; args03 < 8; ++args03) {
250 for (ap_int<32> args13 = 0; args13 < 14; ++args13) {
251 #pragma HLS PIPELINE
252 for (ap_int<32> args23 = 0; args23 < 14; ++args23) {
253 #pragma HLS PIPELINE
254 relu4[args5][args03][args13][args23] = ((ap_fixed<16,

2>)((conv4[args5][args03][args13][args23] < 0.000000e+00f) ? 0.000000e+00f :
conv4[args5][args03][args13][args23]));

↪→

↪→
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255 }
256 }
257 }
258 }
259 float pool2[1][8][7][7];
260 pool2_n: for (ap_int<32> i5 = 0; i5 < 1; ++i5) {
261 pool2_c: for (ap_int<32> c1 = 0; c1 < 8; ++c1) {
262 for (ap_int<32> h1 = 0; h1 < 7; ++h1) {
263 for (ap_int<32> w1 = 0; w1 < 7; ++w1) {
264 float reducer89;
265 reducer89 = -1.000000e+00f;
266 for (ap_int<32> ra65 = 0; ra65 < 2; ++ra65) {
267 for (ap_int<32> ra66 = 0; ra66 < 2; ++ra66) {
268 #pragma HLS PIPELINE
269 reducer89 = std::max(((float)relu4[i5][c1][((h1 * 2) + ra65)][((w1 * 2) +

ra66)]), reducer89);↪→

270 }
271 }
272 pool2[i5][c1][h1][w1] = reducer89;
273 }
274 }
275 }
276 }
277

278

279 float pad_temp4[1][8][9][9];
280 pad5_c: for (ap_int<32> not_zero3 = 0; not_zero3 < 8; ++not_zero3) {
281 for (ap_int<32> index_tuple4 = 0; index_tuple4 < 9; ++index_tuple4) {
282 #pragma HLS PIPELINE
283 for (ap_int<32> i6 = 0; i6 < 9; ++i6) {
284 #pragma HLS PIPELINE
285 pad_temp4[0][not_zero3][index_tuple4][i6] = (((((1 <= index_tuple4) && (index_tuple4 <

8)) && (1 <= i6)) && (i6 < 8)) ? pool2[(((((i6 - ((i6 + -1) % 7)) + (index_tuple4
* 7)) + (not_zero3 * 49)) + -8) / 392)][((((((i6 - ((i6 + -1) % 7)) +
(index_tuple4 * 7)) + (not_zero3 * 49)) + -8) / 49) % 8)][((((((i6 - ((i6 + -1) %
7)) + (index_tuple4 * 7)) + (not_zero3 * 49)) + -8) / 7) % 7)][((i6 + -1) % 7)] :
0.000000e+00f);

↪→

↪→

↪→

↪→

↪→

286 }
287 }
288 }
289 float conv5[1][16][7][7];
290 conv5_c: for (ap_int<32> ff4 = 0; ff4 < 16; ++ff4) {
291 for (ap_int<32> yy4 = 0; yy4 < 7; ++yy4) {
292 for (ap_int<32> xx4 = 0; xx4 < 7; ++xx4) {
293 float reducer90;
294 reducer90 = 0.000000e+00f;
295 for (ap_int<32> rc3 = 0; rc3 < 8; ++rc3) {
296 for (ap_int<32> ry4 = 0; ry4 < 3; ++ry4) {
297 for (ap_int<32> rx4 = 0; rx4 < 3; ++rx4) {
298 #pragma HLS PIPELINE
299 reducer90 = ((pad_temp4[0][rc3][(yy4 + ry4)][(xx4 + rx4)] *

w_conv5[ff4][rc3][ry4][rx4]) + reducer90);↪→

300 }
301 }
302 }
303 conv5[0][ff4][yy4][xx4] = reducer90;
304 }
305 }
306 }
307 ap_fixed<16, 2> relu5[1][16][7][7];
308 relu5_n: for (ap_int<32> args6 = 0; args6 < 1; ++args6) {
309 relu5_c: for (ap_int<32> args04 = 0; args04 < 16; ++args04) {
310 for (ap_int<32> args14 = 0; args14 < 7; ++args14) {
311 #pragma HLS PIPELINE
312 for (ap_int<32> args24 = 0; args24 < 7; ++args24) {
313 #pragma HLS PIPELINE
314 relu5[args6][args04][args14][args24] = ((ap_fixed<16,

2>)((conv5[args6][args04][args14][args24] < 0.000000e+00f) ? 0.000000e+00f :
conv5[args6][args04][args14][args24]));

↪→

↪→

315 }
316 }
317 }
318 }
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319

320

321 float pad_temp5[1][16][9][9];
322 pad6_c: for (ap_int<32> not_zero4 = 0; not_zero4 < 16; ++not_zero4) {
323 for (ap_int<32> index_tuple5 = 0; index_tuple5 < 9; ++index_tuple5) {
324 for (ap_int<32> i7 = 0; i7 < 9; ++i7) {
325 #pragma HLS PIPELINE
326 pad_temp5[0][not_zero4][index_tuple5][i7] = (((((1 <= index_tuple5) && (index_tuple5 <

8)) && (1 <= i7)) && (i7 < 8)) ? ((float)relu5[(((((i7 - ((i7 + -1) % 7)) +
(index_tuple5 * 7)) + (not_zero4 * 49)) + -8) / 784)][((((((i7 - ((i7 + -1) % 7))
+ (index_tuple5 * 7)) + (not_zero4 * 49)) + -8) / 49) % 16)][((((((i7 - ((i7 + -1)
% 7)) + (index_tuple5 * 7)) + (not_zero4 * 49)) + -8) / 7) % 7)][((i7 + -1) % 7)])
: 0.000000e+00f);

↪→

↪→

↪→

↪→

↪→

327 }
328 }
329 }
330 float conv6[1][16][7][7];
331 conv6_c: for (ap_int<32> ff5 = 0; ff5 < 16; ++ff5) {
332 for (ap_int<32> yy5 = 0; yy5 < 7; ++yy5) {
333 for (ap_int<32> xx5 = 0; xx5 < 7; ++xx5) {
334 ap_fixed<16, 2> reducer91;
335 reducer91 = ((ap_fixed<16, 2>)0);
336 for (ap_int<32> rc4 = 0; rc4 < 16; ++rc4) {
337 for (ap_int<32> ry5 = 0; ry5 < 3; ++ry5) {
338 for (ap_int<32> rx5 = 0; rx5 < 3; ++rx5) {
339 #pragma HLS PIPELINE
340 reducer91 = ((ap_fixed<16, 2>)(((ap_fixed<33, 5>)(((ap_fixed<32,

18>)((ap_fixed<16, 2>)pad_temp5[0][rc4][(yy5 + ry5)][(xx5 + rx5)])) *
((ap_fixed<32, 18>)((ap_fixed<16, 2>)w_conv6[ff5][rc4][ry5][rx5])))) +
((ap_fixed<33, 5>)reducer91)));

↪→

↪→

↪→

341 }
342 }
343 }
344 conv6[0][ff5][yy5][xx5] = ((float)reducer91);
345 }
346 }
347 }
348 ap_fixed<16, 2> relu6[1][16][7][7];
349 relu6_n: for (ap_int<32> args7 = 0; args7 < 1; ++args7) {
350 relu6_c: for (ap_int<32> args05 = 0; args05 < 16; ++args05) {
351 for (ap_int<32> args15 = 0; args15 < 7; ++args15) {
352 #pragma HLS PIPELINE
353 for (ap_int<32> args25 = 0; args25 < 7; ++args25) {
354 #pragma HLS PIPELINE
355 relu6[args7][args05][args15][args25] = ((ap_fixed<16,

2>)((conv6[args7][args05][args15][args25] < 0.000000e+00f) ? 0.000000e+00f :
conv6[args7][args05][args15][args25]));

↪→

↪→

356 }
357 }
358 }
359 }
360 float max_pool[1][16][1][1];
361 max_pool_n: for (ap_int<32> i8 = 0; i8 < 1; ++i8) {
362 max_pool_c: for (ap_int<32> c2 = 0; c2 < 16; ++c2) {
363 float reducer92;
364 reducer92 = -1.000000e+00f;
365 for (ap_int<32> ra67 = 0; ra67 < 7; ++ra67) {
366 #pragma HLS PIPELINE
367 for (ap_int<32> ra68 = 0; ra68 < 7; ++ra68) {
368 #pragma HLS PIPELINE
369 reducer92 = std::max(((float)relu6[i8][c2][ra67][ra68]), reducer92);
370 }
371 }
372 max_pool[i8][c2][0][0] = reducer92;
373 }
374 }
375 ap_fixed<16, 2> pool3[1][16];
376 max_pool_convert0: for (ap_int<32> i9 = 0; i9 < 1; ++i9) {
377 max_pool_convert1: for (ap_int<32> c3 = 0; c3 < 16; ++c3) {
378 #pragma HLS PIPELINE
379 pool3[i9][c3] = ((ap_fixed<16, 2>)max_pool[i9][c3][0][0]);
380 }
381 }
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382

383

384 float dense1[1][10];
385 dense_n: for (ap_int<32> i10 = 0; i10 < 1; ++i10) {
386 dense_c: for (ap_int<32> j = 0; j < 10; ++j) {
387 float reducer93;
388 reducer93 = 0.000000e+00f;
389 for (ap_int<32> ra69 = 0; ra69 < 16; ++ra69) {
390 reducer93 = ((((float)pool3[i10][ra69]) * w_dense_1[ra69][j]) + reducer93);
391 }
392 dense1[i10][j] = reducer93;
393 }
394 }
395

396 float compute14;
397 float reducer94;
398 reducer94 = -1.000000e+00f;
399 softmax_0: for (ap_int<32> ra70 = 0; ra70 < 10; ++ra70) {
400 #pragma HLS PIPELINE
401 reducer94 = std::max(dense1[0][ra70], reducer94);
402 }
403 compute14 = reducer94;
404 float compute15;
405 float reducer95;
406 reducer95 = 0.000000e+00f;
407 softmax_1: for (ap_int<32> ra71 = 0; ra71 < 10; ++ra71) {
408 reducer95 = ((float)(exp(((double)(dense1[0][ra71] - compute14))) + ((double)reducer95)));
409 }
410 compute15 = reducer95;
411 float update7;
412 softmax_2: for (ap_int<32> j1 = 0; j1 < 10; ++j1) {
413 #pragma HLS PIPELINE
414 preds[0][j1] = ((float)(exp(((double)(dense1[0][j1] - compute14))) / ((double)compute15)));
415 }
416

417 ap_uint<4> index = 0;
418 float pred = FLT_MIN;
419 results: for (ap_uint<4> i = 0; i < 10; ++i) {
420 #pragma HLS PIPELINE
421 if (preds[0][i] > pred) {
422 index = i;
423 pred = preds[0][i];
424 }
425 }
426

427 result = index;
428 }
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