HAUTE ECOLE
D’INGENIERIE ET DE GESTION
DU CANTON DE VAUD

www.heig-vd.ch Reconfigurable & €mbedded
Digital Systems

Just-in-Time Recompilation and
Optimization of Compiled Binaries

Student: Lucas Elisei

Supervisor: Alberto Dassatti

July 2018

Abstract

Over the past decades, computer science fields grew up exponentially. More and more computational
power is needed to solve modern problems and this implies a lot of energy consumption.

A way to reduce the energy consumption of data centers and their applications could be to optimize
the applications so that they require less computational power.

This document explores an approach to optimize applications by recompiling them without sources.
Recompiling entire binaries would take a lot of time so we focus only on parts of the applications which
require a lot of computational power.

Our method is based on finding a function that takes a lot of time to execute, recompiling it into
more efficient native code to finally patch the binary so it executes the newly optimized function.

Early testing showed that our solution can enhance a binary performance up to 25%. Unfortunately,
the decompilers that exist nowadays are still in an early stage of development, thus limiting the capacities
of our method. In a near future, the decompilers technology will evolve to allow even more performance
enhancement.

Abstract

Ces derniéres années, le domaine de |'informatique a connu un grand essor. De plus en plus de puissance
de calcul est requise pour résoudre des problémes modernes et cela implique une grande consommation
d'énergie.

Une facon de palier notamment a la consommation d'énergie des data centers et de leurs applications
serait d'optimiser ces derniéres afin qu’elles demandent moins de puissance de calcul.

Ce document explore une approche pour optimiser n'importe quelle application en la recompilant sans
avoir accés au code source. Recompiler un programme dans son intégralité demanderait beaucoup de
temps de ce fait nous nous concentrons uniquement sur les parties critiques de |'application.

Notre méthode se base sur trouver une fonction critique, la recompiler en du code natif plus efficace
pour enfin modifier le programme afin qu'il exécute la fonction optimisée.

Des tests ont permis de montrer que notre solution améliore de la performance d'une application
jusqu'a 25%. Malheureusement, les décompilateurs existant de nos jours sont encore en phase de
développement prématuré, limitant les capacités de notre méthode. Dans un futur proche, la technologie
de décompilation va évoluer pour proposer des améliorations encore plus marquées.

Table of contents

1 Introduction
1.1 Project aim and objectives
1.2 Disposition e
1.3 Requirements
1.4 Theoretical overview
1.4.1 Executable and Linkable Format L.
1.4.2 Decompilation
2 Literature review
3 State of the art tools
3.1 Intermediate representations
3.2 Existing tools e
4 Successful recompilation
5 Automatization tool
51 Design o
5.2 elfparser. Lo
53 retdec e e
B4 AT . .
55 1live-patcher.
5.6 liboptimizer. L
5.7 optimizer L
6 Examples
6.1 Simple addition
6.1.1 32-bit
6.1.2 64-bit
6.2 Simple multiplication
6.2.1 32-bit
6.2.2 64-bit
6.3 Matrices multiplication
6.3.1 32-bit
6.3.2 64-bit
7 Conclusion
8 Acknowledgements
References
Appendices
A Authentication
B Requirements
C Simple decompilation example
D liboptimizer
D.1 elfparser.
D.2 retdec. e
D3 Jit . . .
D.4 live-patcher.
D.5 liboptimizer
D.6 mmult e

11
11
12
13
13
14
15
16

18
18
18
19
21
21
22
23
23
24

25
26
28
29
29
30

Introduction

1 Introduction

Over the past decades, computer science fields grew up exponentially. More and more computational power
is needed to solve actual problems (e.g. machine learning or artificial intelligence).

In 1965, Gordon Moore, Intel's co-founder, stated that the number of transistors' that can be placed on
a integrated circuit doubles roughly every two years [7]. It is known as Moore's Law. Due to physics and
economic limitations, this law is unfortunately coming to an end and that might be critical for technological
progress.

A way to negate the end of Moore's Law could be to optimize existing applications so that they require less
computational power. Most programs are proprietary software, which means we don't have access to the

source code, leaving us this compiled binaries?.

This document explores an approach to optimize applications by recompiling them without sources. Just-in-
Time recompilation can make use of runtime to dynamically recompile parts of the executed applications to
generate a more efficient native code.

Hence, as a consequence of this, executable programs need less computational power, negating the end
of Moore's Law. Furthermore, it could allow any applications to run on any architecture, thus reducing
development time. Indeed, nowadays, developers are forced to develop specific code for each architecture to
produce high-performance applications.

1.1 Project aim and objectives

The aim of this project is to optimize any application binary by finding the potential bottlenecks at run-
time. Those bottlenecks are then decompiled to an Intermediate Representation (IR), optimized and finally
recompiled so that the running application uses the new version.

To achieve this aim, the following objectives have been identified:
1. Review several decompilation tools and find one that suits our needs.
2. Find a way to successfully recompile a given function from a simple program.
3. Develop a program to automatize the process.

A long-term vision could be to extend the Just-in-Time recompilation and optimization to heterogeneous
systems® by off-loading code to an FPGA or a GPU [39]. Doing so would significantly lower the CPU load
and reduce application execution time.

1.2 Disposition
This document details every stage of the project. It follows a logical structure and outlines the major stages
in chronological order. A brief summary of each section is presented in the list below.

1. Introduction
Presents the project, its aim and objectives and introduces some technical terms.

2. Literature review
Discusses papers and work that other teams have done and/or are doing with decompilers.

3. State of the art tools
Reviews several decompilation tools and evaluates the best one to use for this project.

4. Successful recompilation
Details how to achieve the second objective, the recompilation step.

5. Automatization tool
Details the implementation of the third objective, the automatization tool.

lIn a computer, a transistor is a component that represents the binary 0's and 1's (bits).
2Executable program.
3An heterogeneous system uses more than one kind of processor (e.g., CPU, GPU or FPGA) — Wikipedia

HEIG-VD | Lucas Elisei Page 1

Introduction

1.3 Requirements

The tools required to run and use the project are detailed in the appendix B.

1.4 Theoretical overview

Before diving into the core of the subject, it could be useful to review some technical terms that are necessary
for the good understanding of this document.

1.4.1 Executable and Linkable Format

The Executable and Linkable Format (ELF) is common standard file format for executable files, object code
and shared libraries. Since ELF is by design flexible, extensible and cross-platform, it has been adopted by a
plethora of operating systems on many different platforms [8].

Each ELF file is made up of one ELF header. It starts with the four bytes magic number 0x7F, 'E', 'L', 'F'.
The ELF file header contains general information about the executable, such as the addresses length (32- or
64-bit), the endianness (big-endian or little-endian), the object file type (executable, relocatable or shared
object), the assembly architecture (e.g., x86 or ARM), the virtual address of its entry point (which indicates
the starting point of the program execution) and the offsets to the program and sections headers.

The program header is meaningful to executables and shared objects only. It contains a description for each
segment (which contains one ore more sections) and other information the system needs to prepare the
program for execution.

The section headers contain a description for each section like address location and access rights (i.e. read,
write and execution).

The figure 1 shows an overview of how an ELF executable is structured.

ELF header

Program header table

text

.-rodata

.data

Section header table

Figure 1: Structure of an ELF executable [8]

HEIG-VD | Lucas Elisei Page 2

Introduction

1.4.2 Decompilation

A compiler is a software that translates human-readable programming languages (e.g. C or Java) into a
machine-code language (e.g. assembly) to produce an executable program. A decompiler does the exact
opposite: it lifts code from a low-level into a higher-level representation.

The figure 2 shows the difference between a simple C code and its translation into machine code.

int a = 5: movl $5, %eax
int b = 4f movl $4, %ebx
- B o, o
int c - a + b addl %hebx, %eax
ret

Figure 2: On the left, a simple C program that adds two integers a and b into an integer c. On the right,
the resulting assembly code after compilation.

Compared to decompilers, compilers have a more privileged position: the input language is strictly defined
and plenty of information is available for functions, variables, types, etc. If the compiler cannot generate a
valid code because the input does not conform to the language standards, it is allowed to simply print an
error message and stop. Decompilers do not benefit from anything similar. Just the contrary [6]:

= Compiled architecture instructions generally use variable length encoding ;

= The input binary is often obfuscated ;

= Many decompilation problems are unsolved or proven to be unsolvable in generic cases ;
= The output is examined in details by a human being and any sub-optimality is noticed.

In conclusion, robust machine code decompilation is impossible. A decompiler will always have some imper-
fections and eventually generate wrong output. Our best hope is to diminish the undesired effects as much
as possible. To achieve this, here are some basic ideas [16]:

= Make some configurable assumptions about the input (e.g. calling conventions). The user will be able
to control the decompiler by specifying the missing information. In simple cases, the decompiler will
deduce or guess it.

» Use solid theoretical approach to solve problems (e.g. instruction simplification).
= Use heuristics for unsolvable problems (indirect jumps, call arguments).

= Prefer to generate ugly but correct output rather than nice but incorrect. Let the user embellish if he
wants to do so.

= Let the user guide the decompilation in difficult cases (e.g. function prototypes).

HEIG-VD | Lucas Elisei Page 3

Introduction

Decompilation can be broken down into several phases:

Decompiler

Binar High-level
Y L1 Frontend |——| Middleend |—| Backend |—— o<
program language
A

Architecture

Description

Language

Figure 3: Decompiler structure.
1. Front-end

Parses a binary program (ELF) and translates an architecture-specific machine code into a sequence of
low-level IR. To do so, the front-end uses an architecture description language (ADL). The ADL contains
information such as the processor resources (i.e. available registers and memory) and instruction set
(i.e. assembler language syntax, binary encoding and behaviour of each instruction). Each instruction
of the ELF binary is then decoded into an intermediate representation, which describes the program
behaviour in a platform-independent way.

2. Middle-end
Improves the properties of the previously generated low-level IR code and prepares it for the back-end
phase. Improvements includes [5]:

= Search for idioms and other types of program analysis such as constant or expression propagation.
= Retrieval of high-level constructs, such as if..else statements or loops.
= Code optimization.

To do so, the decompiler generates a control-flow graph (CFG) and simplifies it to exclude useless
instructions.

3. Back-end
Finally, the back-end converts the optimized IR into the target high-level language (e.g. C or Python).
During this conversion, loops and conditional statements are identified and reconstructed into a human-
readable way. An other optimization is done and the binary is emitted in the form of the target high-level
language.

HEIG-VD | Lucas Elisei Page 4

Literature review

2 Literature review

As stated previously, a robust decompilation is impossible. But in most cases, we just need it to work. A lot
of papers and books talk about the decompilation process and how to resolve undesired problems.

A list of documents related to decompilation may include:

13" chapter of the book Reversing: Secrets of Reverse Engineering, written by Eldad Eilam [6] ;

Conference paper about Reconstruction of instructions idioms in a retargetable decompiler, by Jakub
Kfoustek and Fridolin Pokorny [18] ;

All publications available on the RetDec website [34].

Also, some interesting projects have been achieved thanks to decompilation:

Mac 68k emulator
Dynamic translating emulator for M68K code for Apple Macintoshes based on PowerPC [21].

StarCraft port to an ARM platform
The Pandora console's community [26] generated an ARM version of the video game StartCraft thanks
to static recompilation [29].

Dolphin emulator
Dolphin emulates the GameCube and Wii consoles on PC thanks to Just-in-Time recompilation of
PowerPC code to x86 and AArché4 [4].

x86 Intel CPUs
Since their Pentium Pro CPU, CISC instructions are translated to more RISC-like internal micro-
operations [28].

HEIG-VD | Lucas Elisei Page 5

State of the art tools

3 State of the art tools

This section reviews an intermediate representation named LLVM IR [20] and several decompilation tools and
evaluates the best candidate to use for this project.

3.1 Intermediate representations

An intermediate representation is similar to a coding language. An IR is designed to be capable of representing
the source code without loss of information and independent of any particular source and target. A compiler
often translates a high-level code to an IR before compiling it into machine instructions.

Nowadays, there are two widely-used compilers: GCC [10] and LLVM [19]. Both of them offer an intermediate
representation. Since most of the available decompilers — if not all — use the LLVM IR, we will not discuss
GIMPLE [11], the GCC's IR.

The LLVM IR aims to be light-weight and low-level while being readable, typed and extensible. You can see
it as a human-readable assembly language representation [20].

Let's pick up the same C and assembly codes shown in figure 2. The same program is translated as follow in
LLVM IR:

%a = add i32 5, 0
%b = add i32 4, 0
%c = add i32 %a, %b
ret i32 Yc

The first two lines store the values into two variables and the third line performs their sum. The last line
returns the result. As you can see, the LLVM IR is easier to read as a human than the assembly code.
Furthermore, it keeps track of the type of the variables, which is really harder in the assembly form.

3.2 Existing tools

The D-Neliac decompiler [13], built in the 1960s, was the first decompiler to prove that decompilation is
feasible. Since this period, many projects have tried to offer correct decompilation.

Today, there are some interesting projects in the wild. Unfortunately, most of them are not open-source! or
depend on proprietary software? (e.g. IDA-Pro [15]) thus they can't be used for our project.

rev.ng

rev.ng [37] is a suite of tools for binary analysis based on QEMU [33] and LLVM. It is (was) developed by
Alessandro Di Federico, a former PhD student at Politecnico di Milano [30]. The project is open-source and
licensed under GPLv2 [12]. Each individual file is released under the terms of the MIT License [22].

This project relies on a few components but the most interesting one is its static binary translator. Provided
an input ELF binary, it will analyse it and emit an equivalent LLVM IR. The currently supported architectures
are MIPS, ARM and x86-64.

The main issue with this project is that it was last updated more than ten months ago, so it seems like it
has been abandoned. Furthermore, this project was maintained by only one developer, which is quite a small
team.

We ran some tests to see how good it decompiles a binary. Unfortunately, most of the time rev.ng would
crash or produce empty output.

1Type of computer software whose source code is released under a license in which the copyright holder grants users the
rights to study, change and distribute the software to anyone and for any purpose. — Wikipedia

2Proprietary software is non-free computer software for which the software’s publisher or another person retains intellectual
property rights—usually copyright of the source code, but sometimes patent rights. — Wikipedia

HEIG-VD | Lucas Elisei Page 6

State of the art tools

RetDec

RetDec [34], for Retargetable Decompiler, is an open-source machine-code decompiler based on LLVM [19].
It is being developed by the famous company Avast Software [1] and is licensed under the MIT License [22].
Its development was internal to Avast for several years but in February 2018, they decided to release the code
publicly. It currently supports the following architectures: x86, ARM, MIPS, PIC32 and PowerPC. RetDec is
also being actively developed by at least three people.

This project is composed of a plethora of libraries but we will mainly focus on the bin211vmir library which
aims to translate binaries into LLVM IR modules. The project also includes a tool named bin21lvmirtool
which is a front-end for the bin211vmir library.

The main feature that offers RetDec against other decompilers is that it is retargetable. That means that
— thanks to the ISAC architecture description language [14], also developed by the RetDec team — it is
not necessary to manually reconfigure the decompiler for a new architecture, making it compatible with all
machines (but not all architectures, as stated before).

BOLT

The BOLT project [25] was developed by a Facebook team and interns. It aims to boost the performance
of 64-bit ELF applications by implementing a post-link optimizer. BOLT is built on top of LLVM and its
optimization techniques are based on reorganizing code so caches suffer less fragmentation and at reordering
basic blocks to relieve pressure from the branch predictor unit of a processor.

BOLT was deployed in Facebook data-centers and improvements ranging between 2% and 8% were observed,
which is quite remarkable giving the fact that data-centers’ applications are already highly optimized. These
optimizations are really important since they reduce energy consumption thus reducing environmental impacts
and costs.

Even if BOLT is a really promising and interesting project, it does not decompile code. It disassembles it and
constructs a control-flow graph based on the disassembled code. However, this project might be helpful for
inspiration about our project's architecture and the techniques that might be used to reach our aim.

Conclusion

After this analysis, we chose RetDec as the best candidate for this project since its development is active and
led by a professional team. The MIT License also allows us to freely use their code which could be useful for
the development of this project.

Some useful resources are available on their website retdec.com such as publications and presentations.

Previously, we stated that RetDec only supports 32-bit architectures. That's right for its official version but
the 64-bit decompilation can be enabled by switching to another version of RetDec, even if it's not ready
yet. For this document, we will use the RetDec version which is capable of decompiling both 32- and 64-bit
architectures.

Since our project will mostly rely on the decompilation done by RetDec, we will analyse in details how it does
decompile machine code.

RetDec is composed of two main parts: the pre-processing and the core.

The pre-processing part is responsible of analysing the binary program to produce an image that will be later
used by the core.

The first step of the pre-processing is to discover the format of the binary program. RetDec supports the
following formats: ELF, HEX, PE, COFF, Mach-O and raw binary. Then, a uniform binary representation
is produced. Thanks to this uniform representation, the other parts of RetDec don't need to care about the
original format of the program. The next step focuses on passing the uniform representation to an image
loader library which will emulates a loader. This is important since depending on the loader used, the data
loaded into memory can look different than the data in the original binary.

The image is now emitted. RetDec will performs an additional step by looking for available debugging

HEIG-VD | Lucas Elisei Page 7

State of the art tools

information. This will help to produce a better LLVM IR but most of proprietary programs ship with no debug
information to avoid being analysed and possibility modified by hackers.

The purpose of the core is to lift LLVM IR code from the image produced by the pre-processing.

To do so, it starts by doing initialization passes to perform dead global elimination, constant propagation,
inlining, loop optimization, etc... in the machine code. Then, RetDec calls an third-party framework called
Capstone [3], which actually lifts instructions to the LLVM intermediate representation. Afterwards, some
low-level passes are performed to identify global and local variables, functions’ arguments and return type,
data types and so on. Finally, some high-level LLVM passes are done on the LLVM IR already at disposition
for final touches. Then, the LLVM IR is emitted by RetDec for future use.

We had the chance to attend the Pass the SALT 2018 [27] conference, where the RetDec team gave a talk.
Thanks to this talk, we had more overview about the RetDec architecture and how it internally works.

HEIG-VD | Lucas Elisei Page 8

Successful recompilation

4 Successful recompilation

Now that we have reached the first objective of this project by identifying a decompilation tool that suits our
needs, we can focus on the second objective: find a way to successfully recompile a given function from a
simple program.

First of all, we code a function which simply adds two unsigned integers and returns the result:
simple.c

uint32_t simple_add(uint32_t *a, uint32_t #*b) {
return *a + *b;

}

Then, we create a simple main function which takes two integers as arguments, calls the simple_add() method
and displays the result.

main.c

int main(int argc, char** argv) {
uint32_t a, b;

a
b

atoi(argv[1]);
atoi(argv[2]);

fprintf (stdout, "Result: %u\n", simple_add(&a, &b));

return EXIT_SUCCESS;

Now that we have a fully functional program, we compile it:

gcc -std=c99 -Wall -Werror -pedantic -Iinclude -m32 main.c simple.c -o main

We now have a 32-bit binary. The most interesting part is not the compilation, but the recompilation. So
let's get started. We invoke RetDec decompilation script to get the LLVM IR of the simple_add() method:

retdec-decompiler.sh --stop-after bin2llvmir --select-functions simple_add ./main

The command above calls the RetDec decompilation script and asks it to stop after it has translated the
binary (./main) into the LLVM IR (--stop-after bin211vmir). We also ask it to only decompile the simple_add ()

method (--select-functions simple_add). The following code is the resulting LLVM IR:
main.c.backend.ll

define i32 @simple_add(i32* J%argl, i32 Yarg2) local_unnamed_addr {

%v2_57d = load i32, i32% Jargl, align 4
%v1_582 = inttoptr i32 %arg2 to i32#
%v2_582 = load i32, i32x %v1_582, align 4

%v2_584 = add i32 %v2_582, %v2_57d
ret i32 %v2_584

You might have noted that the method's signature is not the same as the one defined in simple.c. It is an
acknowledged bug that should be fixed in the future [35]. Apart from the signature, everything appears to be
in order, which is already quite motivating. We will now recompile the LLVM IR into a new object file and
link it with the previously created object file main.o.

HEIG-VD | Lucas Elisei Page 9

Successful recompilation

11c-5.0 -march=x86 main.c.backend.ll -o main.c.backend.s
gcc -m32 -c main.c.backend.s -o main.c.backend.o
gcc -m32 main.o main.c.backend.o -o ./main.translated

The first line invokes the LLVM static compiler, which can compile LLVM IR code. We pass the option
-march=x86 to tell the compiler to compile into a 32-bit version. This is required since RetDec can only
decompile 32-bit code at the moment. The resulting code is assembly code.

The second line calls GCC, a widely-used compiler, to compile the assembly code into an object file. Again,
the -m32 flag asks the compiler to produce a 32-bit version of the binary.

The last line links the existing main.o and the newly created main.c.backend.o object files and creates a
new binary named main.translated. By running it, we acknowledge that it still does its job:

./main.translated 5 4
Result: 9

This result demonstrates that a simple function can successfully be recompiled and linked with an existing file
object, which is exactly the second objective of this project. Quite exciting!

Since the recompilation process requires quite a few commands, we created a Makefile to automatize the
process. The source of the Makefile and of the main.c and simple.c files are available in appendix C.

HEIG-VD | Lucas Elisei Page 10

Automatization tool

5 Automatization tool

This section reviews the development of the third objective: develop a program to automatize the recompilation
process. The tool is composed of a library, liboptimizer and a program to call the library, called optimizer.

5.1 Design

Above all, we have to define what the tool will do and how we will achieve it. The program will take several
arguments for execution:

1. The function name to optimize or its offset ;
2. The target binary to execute ;
3. The arguments of the target binary.

The first argument is either the function name or its offset. When the function name is passed to the tool,
we have to discover the offset of the function in the target binary and, reciprocally, when the function offset
is passed to the tool, we must compute its symbol. So the first step of the library is to implement an ELF
parser. The part of the library that will achieve this task will be referred as elfparser.

Once the target ELF has been parsed and that we have enough information, the next step is to call the
RetDec’'s decompilation scripts to retrieve the LLVM IR of the function to optimize. This part is called
retdec.

Then we must recompile it with a JIT compiler. The part of the library in charge of doing the JIT recompilation
is named jit.

Finally, once we have the machine code of the recompiled function, the final step is to patch the target
binary memory space so that it executes the new optimized function instead of the old one. To do that, we
implemented a third part named live-patcher.

Each of these parts will be further discussed later. The figure 4 shows a simple overview of how the library is
structured.

optimizer

liboptimizer

Y

elfparser > retdec > jit live—-patcher

Y
optimized
target binary

Figure 4: liboptimizer pipeline

HEIG-VD | Lucas Elisei Page 11

Automatization tool

5.2 elfparser

As said above, this part of the library is responsible for parsing the ELF binary passed to the library. Its purpose
is to offer the possibility to retrieve the offset of a given symbol and vice-versa, given an offset, retrieve the
corresponding symbol.

To implement this, some previous work is required: the ELF header has to be parsed so that we have
information about the binary. The most wanted information to know is the class of the ELF file: is it 32-bit
or 64-bit? Indeed, this information is the most important since the ELF is not structured the same way for
the two classes. The first bytes of the ELF header are the same for 32- and 64-bit so we assume the ELF is
32-bit and then we adapt. The following structs describe the structure of an ELF header for 32-bit (left) and
64-bit (right):

struct elf32_hdr struct elf64_hdr

typedef struct elf32_hdr { typedef struct elf64_hdr {
unsigned char e_ident[16]; unsigned char e_ident[16];
E1f32_Half e_type; E1f64_Half e_type;
E1f32_Half e_machine; E1f64_Half e_machine;
E1f32_Word e_version; E1f64_Word e_version;
E1£32_Addr e_entry; E1f64_Addr e_entry;
E1£f32_0ff e_phoff; E1f64_0ff e_phoff;
E1£32_0ff e_shoff; E1f64_0ff e_shoff;
E1£32_Word e_flags; E1f64_Word e_flags;
E1f32_Half e_ehsize; E1f64_Half e_ehsize;
E1f32_Half e_phentsize; E1f64_Half e_phentsize;
E1f32_Half e_phnum; E1f64_Half e_phnum;
E1£f32_Half e_shentsize; E1f64_Half e_shentsize;
E1f32_Half e_shnum; E1f64_Half e_shnum;
E1£f32_Half e_shstrndx; E1f64_Half e_shstrndx;

} E1£32_Ehdr; } E1f64_Ehdr;

And the following typedefs define the types used for the above structs:
Base types for 64-bit

Base types for 32-bit typedef uint64_t E1f64_Addr;
typedef uintl6_t E1f64_Half;
typedef uint32_t EL£32_Addr; yp : - -

. typedef intl6_t E1f64_SHalf;

typedef uinti6_t E1f32_Half; .

R typedef uint64_t E1f64_0ff;

typedef uint32_t E1£f32_0ff; R
. typedef int32_t E1f64_Sword;

typedef int32_t E1f32_Sword; .
typedef uint32_t E1£32_Word; typedef uint32 t EL£64 Word;
yp - - ’ typedef uint64_t E1f64_Xword;

typedef int64_t E1f64_Sxword;

Thanks to the fields e_shoff, e_shnum, e_shentsize, we obtain information about the location of Section
Header Table, the number of entries it contains and their size.

Additionally, the index of the String Table in the Section Header Table is stored into the field e_shstrndx.
Thanks to this index, we already know where the String Table is located. The last information we need is the
location of the Symbol Table.

The Section Header Table contains all the information necessary to locate each ELF section. But we only
really need one section: the Symbol Table. An ELF file contains only one Symbol Table and the section has

a unique type to identify it. This type has the value 2.
32-bit Section Header

typedef struct elf32_shdr {
E1f32_Word sh_name;
E1£32_Word sh_type;
E1£32_Word sh_flags;
E1f32_Addr sh_addr;
E1£32_0ff sh_offset;
E1f32_Word sh_size;
E1f32_Word sh_link;
E1f32_Word sh_info;

64-bit Section Header

typedef struct elf64_shdr {
E1f64_Word sh_name;
E1f64_Word sh_type;
E1f64_Xword sh_flags;
E1f64_Addr sh_addr;
E1f64_0ff sh_offset;
E1f64_Xword sh_size;
E1f64_Word sh_link;
E1f64_Word sh_info;

E1£f32_Word sh_addralign;
E1f32_Word sh_entsize;

} E1£32_Shdr;

E1f64_Xword sh_addralign;
E1f64_Xword sh_entsize;

} E1f64_Shdr;

The field sh_type contains the type of the section. So we iterate over the table until we find a section with
the type 2. The location of the symbols is stored by the field sh_offset. So what is left to do is to look at

HEIG-VD | Lucas Elisei Page 12

Automatization tool

the symbols location, iterate over the list until we find the symbol we are interested in. A symbol is structured
as follow:

32-bit symbol — — 64-bit symbol
typedef struct elf32_sym{ typedef struct elf64_sym {
E1f32_Word st_name; E1f64_Word st_name;
E1£f32_Addr st_value; unsigned char st_info;
E1£f32_Word st_size; unsigned char st_other;
unsigned char st_info; E1f64_Half st_shndx;
unsigned char st_other; E1f64_Addr st_value;
E1£f32_Half st_shndx; E1f64_Xword st_size;
} E1£32_Sym; } E1f64_Sym;

The field st_name contains an offset from the String Table where the symbol character string is located. The
field st_value contains the offset of the symbol in the ELF file. So if we want to retrieve an offset from
a given symbol, we iterate over all symbols until we find the corresponding character string and return the
offset.

On the contrary, if we want to retrieve a symbol from a given offset, we iterate over all symbols until we find
the corresponding offset and return the character string.

Summary

Developing this part of the library was not really difficult. The main issue was that there is a lot of duplicate
code since 32-bit and 64-bit ELF have different structures.
The code relative to elfparser is available in appendix D.1.

5.3 retdec

retdec is responsible for calling the RetDec's decompilation scripts and retrieve the resulting LLVM IR file.

Since RetDec's scripts generate several files, we chose to create a temporary directory which is deleted once
liboptimizer is done running. Then, the RetDec's scripts are called with corresponding arguments: stopping
after the generation of the LLVM IR, the temporary directory as working directory, the name of the function
to decompile and the target binary.

Summary

This part of the library is very lightweight so no problem were encountered during its development.
The code relative to retdec is available in appendix D.2.

5.4 jit

The purpose of the library jit part is to implement a JIT compiler so we can recompile the target function.
It uses LLVM’s On-Request-Compilation (ORC) APIs [2].

Since the offered APls are really simple to use, the implementation is straight-forward. We simply initialize
an ExecutionEngine [9], parse the LLVM IR file containing the function to optimize and tell the engine to
compile it. It returns a pointer on the optimized function so we can use it later.

We have the optimized function machine code at our disposal and that's great. But we need one more
information: the size (in bytes) of the optimized function. Unfortunately, the ExecutionEngine class doesn't
provide a simple way to get the size.

The solution is to implement a subclass of the JITEventListener [17] class and register this new listener
so that every time the JIT compiles a function, it notifies its registered listeners with more information than
just a pointer to the new function's machine code.

HEIG-VD | Lucas Elisei Page 13

Automatization tool

Summary

The code for this part of liboptimizer is really simple thanks to the LLVM APls. The main problem we
came across was to get the size of the compiled function but after some research we achieve to overcome the
issue.

The code relative to the JIT front-end and the JITEventListener subclass is available in appendix D.3.

5.5 1live-patcher

The aim of the live-patcher is to modify the target process memory space so that it calls the optimized
function instead of the old one during its execution.

It mostly relies on the ptrace [32] system call [38] which allows a tracer process (in our case, liboptimizer)
to observe and control the execution of a tracee (the target binary).

First things first, we have to attach the tracer to the target process and stop its execution so that we can
modify its memory.

The next step is to allocate a new memory segment into the target process memory space. This segment is
used to store the machine code of the optimized function. To do so, we must inject a mmap2 [23] system call.
The injection consists of modifying some tracee registers with pre-defined values to ensure that we have the
correct access rights, enough allocated space, etc... After the system call is injected, we retrieve the address
of the newly allocated memory segment by reading back the value of the RAX register.

Now that we have a memory segment that we can execute and write into as we wish, we can write the
optimized function’s machine code into it.

The last but not least step is to hook the old function so that the process executes the optimized one. The
hook consists of replacing the first bytes of the old function with an unconditional jump to the location of
the optimized function, which is stored at the address of the memory segment we got before.

For the sake of clarity, we created two simple macros that allow to create the assembly code for 32- and 64-bit
programs. The details of these macros are available in appendix D.4.

32-bit hook 64-bit hook
unsigned char jump_32[] = unsigned char jump_64[] =
< MAKE_JUMP32(process->freesegment_address); < MAKE_JUMP64 (process->freesegment_address) ;

These macros take as argument the address of the memory segment and then append machine instructions
to create a hook.

There are only two instructions: the first one loads the address of the memory segment into a register and
the last one tells the processor to jump unconditionally to the location stored into the same register. Since
we support both 32- and 64-bit binaries, we have two different jumps because the address length and the
instruction sets are different. After all these memory replacements, we can finally let the tracee process
continue its execution with the optimized function.

Summary

This part of the library was the most difficult but also the most interesting one to develop. It required to dig
at a very low level into the tracee memory space, reading instructions byte per byte, find a way to inject a
system call, etc... To ease debugging, we had to develop our very own debugging function. We learned a lot
developing this part and the effort was rewarding.

The code relative to the 1ive-patcher part is available in appendix D.4.

HEIG-VD | Lucas Elisei Page 14

Automatization tool

5.6

liboptimizer

All those parts work great individually but we need to wire them up so we can expose them to any user that
wants to use the library. To keep things simple, we offer no more than four methods and a struct that is
meant to contain all the information that is needed.

process_info_t

typedef struct {

const char *path;

int argc;

char **argv;

pid_t pid;

const char *function_name;

uint64_t function_offset;
uint64_t codesegment_address;
uint64_t freesegment_address;
uint8_t *optimized_function;
size_t optimized_function_size;
uint8_t is64;

} process_info_t;

xpath: Path of the target binary.

argc: Arguments count of the target binary.

x*argv: Array of the arguments of the target binary.

pid: The Process ID of the target binary.

*function_name: The name of the function to optimize.
function_offset: The offset of the function to optimize.
codesegment_address: Address of the Code Segment of the target process.
freesegment_address: Address of the newly allocated memory chunk.
*optimized_function: Pointer to the optimized function machine code.
optimized_function_size: Size in bytes of the optimized function.

is64: Is the target process 32- or 64-bit?

Library methods:

char *symbol_at_address(const char *path, uint64_t address)

Resolves the symbol of the function at the given address in the binary located at path. Allocates and
returns a null-terminated string containing the symbol.

Returns NULL on error.

process_info_t *init_process(int argc, char **argv, const char *function_name)

Given argc and argv of the binary and the name of the function to optimize, allocates and returns a
pointer to a process_info_t that contains basic information about the process.

Returns nULL on error.

This method calls the RetDec's scripts to decompile the target function, pass the resulting LLVM IR
file to the JIT, retrieve the optimized function and attach the target binary so its memory space can be
modified.

int modify_process(process_info_t *process)

Modifies the memory of the associated process of the argument. Basically hooks the function to optimize
with the optimized one.

Returns 0 on success, 1 otherwise.

int execute_process(process_info_t *process, bool wait_for_exit)

Starts the execution of the process. If wait_for_exit is true, waits for the process to exit and returns
its exit status. If wait_for_exit is false, doesn't wait for the process to exit and returns O on success,
1 otherwise.

HEIG-VD | Lucas Elisei Page 15

Automatization tool

5.7 optimizer

Now that we have a library that works, we need a small program to show how to call it. The following code

shows a simple use case of liboptimizer.
optimizer.c

* File: optimizer.c

*

* Created by: Lucas Eliset <lucas.elisei@heig-vd.ch>
*

*

Shows how to use the liboptimizer library.

*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "debug.h"
#include "liboptimizer.h"

static void print_help(char **argv) {
fprintf (stderr, "Usage: %s {-f <function_name>, -a <function_offset>} <target_bin>
— [target_args]\n", argv[0]);

}

int main(int argc, char *xargv) {
process_info_t *process;
char *function_name;
uint64_t function_offset;
int rc;

if (arge < 4) {
print_help(argv);

return EXIT_FAILURE;
}

if (strcmp(argv[i], "-a") == 0) {

function_offset = strtoull(argv[2], NULL, 16);

function_name = symbol_at_address(argv[3], function_offset);
}
else if (stremp(argv([i]l, "-f") == 0) {

function_name = argv[2];

}

else {
fprintf(stderr, "Unrecognized option: %s\n", argv[i]);
print_help(argv);
return EXIT_FAILURE;

}

process = init_process(argc - 3, argv + 3, function_name);
if (process == NULL) {
fprintf(stderr, "[optimizer] ERROR: Error during initialization.\n");

return EXIT_FAILURE;
}

#ifdef LIBOPTIMIZER_ DEBUG
print_process_info(process);
#endif

rc = modify_process(process);
if (rc < 0) {
fprintf (stderr, "[optimizer] ERROR: Error while modifying process.\n");

return EXIT_FAILURE;

rc = execute_process(process, true);
if (rc < 0) {
fprintf (stderr, "[optimizer] ERROR: Error while executing process.\n");

HEIG-VD | Lucas Elisei Page 16

Automatization tool

return EXIT_FAILURE;
3

return EXIT_SUCCESS;

This simple program works as follow: the first argument is either the name of the function to decompile
(specified by -f) or its offset (specified by -a). The rest of the arguments are the binary name and its
arguments.

Remember the small program we decompiled in section 4?7 If we pass it to optimizer to decompile the
simple_add method, it should look like something like the following:

./optimizer -f simple_add main 5 4

HEIG-VD | Lucas Elisei Page 17

Examples

6 Examples

This section shows examples of using the 1iboptimizer and limitations of the tool (SPOILER: its depen-
dencies).

Because we support both 32- and 64-bit binaries, we will perform those examples for both.

6.1 Simple addition

The first example focuses on a simple function that sums two integers and prints the result. The code of the

target program is the following:
simple_add.c

* File: simple_add.c

*

* Created by: lucas Eliset <lucas.elisei@heig-vd.ch>
*

*

Sums two integers and prints the result.

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int simple_add(int a, int b) {
return a + b;

}

int main(int argc, char x*argv) {
int a, b, rc;

if (arge !'= 3) {
fprintf (stderr, "[simple_add] Usage: %s <a> \n", argv[0]);

return EXIT_FAILURE;
}

// Retrieve arguments.
a = atoi(argv[i]);

b = atoi(argv([2]);

// Sum the arguments.
rc = simple_add(a, b);

// Print the result
fprintf (stdout, "[simple_add] Result: %d\n", rc);

return EXIT_SUCCESS;

For this first example, we will not recompile the simple_add function to optimize the program but to see if
liboptimizer does its job. The function is too simple to measure its impact when optimized.
The 32- and 64-bit versions of this program are respectively named simple_add32 and simple_add64.

6.1.1 32-bit

To compile the simple_add32 program, we use the following command:

gcc -Wall -Werror -00 -m32 simple_add.c -o simple_add32

The option -00 tells the compiler to avoid doing optimization. This way, we will clearly see if the function
has been optimized after being processed by liboptimizer.

Below, the machine code corresponding to the non-optimized simple_add function:

HEIG-VD | Lucas Elisei Page 18

Examples

000011bd <simple_add>:
11bd: 55 push Yebp
11be: 89 eb mov %esp, %ebp
11c0: e8 cc 00 00 00 call 1291 <__x86.get_pc_thunk.ax>
11c5: 05 3b 2e 00 00 add $0x2e3b, heax
1ica: 8b 55 08 mov 0x8 (%ebp) , hedx
11cd: 8b 45 Oc mov Oxc (%ebp) , heax
1140: 01 do add Yedx , heax
11d2: 5d pop %ebp
11d3: c3 ret

We see that the size of the function is 22 bytes and is composed of 9 instructions (one of which is a call
to another function — __x86.get_pc_thunk.ax). Now, we call the optimizer program to optimize the
function.

./optimizer -f simple_add simple_add32 3 2

We are greeted with the message [simple_add] Result: 5 which means that it returned the correct result,
and that's great! Now, let's take a look to the machine code of the optimized function:

£7£70000 <simple_add>:

0: 8b 44 24 08 mov 0x8 (%esp) , heax
4: 03 44 24 04 add 0x4 (Yiesp) , heax
8: c3 ret

We clearly see that the function has been optimized! The size of the simple_add function is now of 9 bytes
and is composed of only 3 instructions.

6.1.2 64-bit

To compile the simple_add64 program, we use the following command:

gcc -Wall -Werror -00 simple_add.c -o simple_add64

Below, the machine code corresponding to the non-optimized simple_add function:

000000000000116a <simple_add>:

116a: 55 push Yrbp

116b: 48 89 e5 mov %rsp, hrbp

116e: 89 7d fc mov %edi,-0x4 (%rbp)
1171: 89 75 8 mov %esi,-0x8(%rbp)
1174: 8b 55 fc mov -0x4 (%rbp) ,hedx
1177: 8b 45 f£8 mov -0x8 (%rbp) , heax
117a: 01 40 add %edx , heax

117c: 5d pop %rbp

1174d: c3 retq

Before optimization, the size of the function is 19 bytes and is composed of 9 instructions. Now, we call the
optimizer program with the same arguments as for the 32-bit version (only replacing simple_add32 with
simple_add64).

This time, the optimized program doesn’t print any message... That's not good. Let's analyse the resulting
machine code of the optimized function:

00007£0c7a90b000 <simple_add>:
0: 48 c7 44 24 e8 00 00 movqg $0x0,-0x18(%rsp)
7: 00 00
9: 48 8b 44 24 0 mov -0x20 (%rsp) ,%rax
e: 48 89 04 25 f8 ff ff mov frax,OxfffffEFEFEEFEFES
15: ff
16: 48 c7 44 24 e0 £8 ff movq $OxfffffffffffFffff8,-0x20(Yrsp)
1d: ff ff
1f: 8b 44 24 f£8 mov -0x8(%rsp) ,%eax

HEIG-VD | Lucas Elisei Page 19

Examples

23: 89 04 25 f4 ff ff ff mov fheax,OxffEfFfFEFEFFEFEA
2a: 8b 44 24 f0 mov -0x10(%rsp) , heax
2e: 48 8b 4c 24 e0 mov -0x20 (%rsp) ,hrex
33: 89 41 8 mov Yheax,-0x8 (%rcx)
36: 48 8b 4c 24 e0 mov -0x20 (%rsp) ,%rex
3b: 8b 41 f8 mov -0x8(%rcx) ,heax
3e: 03 41 fc add -0x4 (rex) , heax
41: 48 8b 4c 24 e8 mov -0x18(%rsp) ,%rex
46: 48 8b 09 mov (%rex) ,hrex

49: 48 89 4c 24 <0 mov %rex,-0x20 (%rsp)
4e: c3 retq

First of all, the optimized function is bigger than the original one, quite odd. Second, the second instruction
(at the offset 0x7), is invalid. Its opcode [24] doesn't correspond to any instruction that the processor
supports... We can also see that at the offsets 0x15 and 0x1d, the opcode are not recognized.

To be sure of what causes the problem, we look at the optimized process’ execution instruction per instruction.
When the program reach the instruction at the offset 0x9, it crashes. So the problem was effectively this
instruction (and the other two might cause a problem too).

The culprit is RetDec. As said in the section 3, the 64-bit version of RetDec has been used but it doesn't
work as great as 32-bit decompilation. If we take a look at the LLVM IR generated by RetDec, we clearly see
that there was some misunderstanding:

define i64 @simple_add() local_unnamed_addr {

dec_label_pc_116a:
%rbp.global-to-local = alloca i64, align 8
%rdi.global-to-local = alloca i64, align 8
%rsi.global-to-local = alloca i64, align 8
%rsp.global-to-local = alloca i64, align 8
store i64 0, i64#* Jrsp.global-to-local, align 8
%v0_116a = load i64, i64* Jrbp.global-to-local, align 8
%vl_116a = load i64, i64* Yrsp.global-to-local, align 8
%v2_116a = add i64 %vi_116a, -8
%v3_116a = inttoptr i64 %v2_116a to i64x*
store i64 %vO_116a, i64* %v3_116a, align 8
store i64 %v2_116a, i64* Jrbp.global-to-local, align 8
%v0_116e = load i64, i64* Yrdi.global-to-local, align 8
%vi_116e = trunc i64 %vO_116e to i32
%v3_116e = add i64 %vi_116a, -12
%v4_116e = inttoptr i64 %v3_116e to i32#
store 132 %vl_116e, i32* %v4_116e, align 4
%v0_1171 = load i64, i64* Yrsi.global-to-local, align 8
%v1_1171 = trunc i64 %v0_1171 to i32
%v2_1171 = load i64, i64* Yrbp.global-to-local, align 8
%v3_1171 = add i64 %v2_1171, -8
%v4_1171 = inttoptr i64 %v3_1171 to i32x%
store 132 %v1_1171, i32% %v4_1171, align 4
%v0_1174 = load i64, i64* Yrbp.global-to-local, align 8
%v1_1174 = add i64 %v0_1174, -4
%v2_1174 = inttoptr i64 %v1_1174 to i32x%
%v3_1174 = load i32, i32x %v2_1174, align 4
%v1_1177 = add i64 %v0_1174, -8
%v2_1177 = inttoptr i64 %v1_1177 to i32x%
%v3_1177 = load i32, i32% %v2_1177, align 4
%v4_117a = add i32 %v3_1177, %v3_1174
%v20_117a = zext i32 %v4_117a to i64
%v0_117c = load i64, i64* Yrsp.global-to-local, align 8
%v1_117c = inttoptr i64 %v0_117c to i64x*
%v2_117c = load i64, i64* %v1_117c, align 8
store i64 %v2_117c, i64* Jrbp.global-to-local, align 8
ret i64 %v20_117a

; uselistorder directives
uselistorder i64#* %rbp.global-to-local, { 0, 2, 3, 4, 1 }
uselistorder i64 -8, { 1, 2, 0 }
uselistorder i32 1, { 0, 2, 1, 3 }

The LLVM IR is really big for a simple addition and the function signature is not interpreted correctly: RetDec
seems to think that the function requires no arguments.

HEIG-VD | Lucas Elisei Page 20

Examples

Conclusion

In conclusion for this simple addition function, the 32-bit version works great but the 64-bit doesn't because
of RetDec. We consider this a normal behaviour since we use a modified version of RetDec with enabled
64-bit decompilation that is not officially supported. There is no solution but waiting for an official 64-bit
support or implementing it, but that's not the scope of our work.

The 32-bit version could be optimized even more by implementing constant propagation, which means that
the optimized function would pre-calculate the result and simply return the 5 instead of doing the operation
itself.

6.2 Simple multiplication

This example is quite the same as the first one but this time, the target program multiplies two integers. The

code is the following:
simple_mul.c

/%

* File: stmple_mul.c

*

* Created by: Lucas Elisei <lucas.elisei@heig-vd.ch>
*

*

Multiplies two integers and prints the result

*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int simple_mul(int a, int b) {
return a * b;

}

int main(int argc, char *xargv) {
int a, b, rc;

if (arge !'= 3) {
fprintf(stderr, "[simple_mul] Usage: %s <a> \n", argv[0]);

return EXIT_FAILURE;
}

// Retrieve the arguments.
a = atoi(argv[1l);
b = atoi(argv([2]);

// Multiply the arguments.
rc = simple_mul(a, b);

// Print the result
fprintf (stdout, "[simple_mul] Result: %d\n", rc);

return EXIT_SUCCESS;

The 32- and 64-bit versions of this program are respectively named simple_mul32 and simple_mul64.

6.2.1 32-bit

For compilation, the command is the same as the one used in the first example. Below, the machine code
corresponding to the non-optimized simple_mul function:

000011bd <simple_mul>:

11bd: 55 push Yebp
11be: 89 eb mov %esp, hebp
11c0: e8 cb 00 00 00 call 1290 <__x86.get_pc_thunk.ax>

HEIG-VD | Lucas Elisei Page 21

N

o o

Examples

11c5: 05 3b 2e 00 00 add $0x2e3b, heax
1ica: 8b 45 08 mov 0x8 (%ebp) , heax
1lcd: Of af 45 Oc imul Oxc(%ebp) ,%eax
11d1: &4 pop %ebp

11d2: c3 ret

We see that the size of the function is 21 bytes and is composed of 8 instructions. Now, we call the optimizer
program to optimize the function:

./optimizer -f simple_mul simple_mul32 3 2

The program prints [simple_mul] Result: 0, which is not really the result we expected. Let's take a look
at the optimized function's machine code:

£7£66000 <simple_mul>:

0: 8b 44 24 04 mov 0x4 (Yesp) , heax
4: Of af 44 24 Oc imul Oxc(%esp) ,%eax
9: «¢3 ret

At first glance, the machine code seems to not contain any error. But if we look closely at the second
instruction, which loads an argument on the stack, the offset is wrong. It is Oxc and should be 0x8 because
the function arguments are 4-byte long, and not 8. There are two possibilities:

1. The compiler thinks that there are two arguments: one is 4-byte long and the other is 8-byte long ;
2. The compiler thinks that there are three arguments, each 4-byte long, and the second one is useless.

Taking a look at the generated LLVM IR from RetDec might help us solve the mystery. Here the LLVM IR
representing the simple_mul function:

define i32 @simple_mul(i64 %argl, i32 %arg2) local_unnamed_addr {

%v4_1lca = trunc i64 jargl to i32
%v7_11cd = mul i32 %v4_1lica, %arg2
ret i32 %v7_11cd

If we look at the function’s signature, we can see that it is wrong. The first argument is interpreted as 64-bit
integer, which is false. At line 3, we see that the decompiler casts the first argument to a 32-bit integer. So
RetDec gets the final type right but not the arguments.

The result printed by the optimized binary can be explained as follow: the compiler retrieves one of the two
arguments 4 bytes farther than expected, resulting in an unexpected value.

6.2.2 64-bit

To compile the simple_mul64 program, we use the following command:

gcc -Wall -Werror -00 simple_mul.c -o simple_mul64

Below, the machine code corresponding to the non-optimized simple_mul function:

000000000000116a <simple_mul>:

116a: 55 push Yrbp

116b: 48 89 eb mov %rsp, hrbp

116e: 89 7d fc mov %edi,-0x4 (%rbp)
1171: 89 75 £8 mov %esi,-0x8(%rbp)
1174: 8b 45 fc mov -0x4 (%rbp) , heax
1177: 0f af 45 £8 imul -0x8(%rbp) ,%eax
117b: 5d pop %rbp

117c: c3 retq

Before optimization, the size of the function is 18 bytes and is composed of 8 instructions. The next step is
to call the optimizer program with the same arguments as for the 32-bit version:

HEIG-VD | Lucas Elisei Page 22

Examples

./optimizer -f simple_mul simple_mul64 3 2

As for the 64-bit version of the first example, the optimized doesn’t print any message. Let's take a look at
the optimized function's machine code:

7£807a326000 <simple_mul>:
0: 48 c7 44 24 e8 00 00 movq $0x0,-0x18(%rsp)
7: 00 00
9: 48 8b 44 24 e0 mov -0x20 (%rsp) , %rax
e: 48 89 04 25 £f8 ff ff mov Yrax ,OxfffFEffFFEFFEFFF8
15: ff
16: 48 c7 44 24 e0 f8 ff movq SOXELELEFEFEFELFEFB,-0x20(Yrsp)
1d: f£f ff
1f: 8b 44 24 f8 mov -0x8(%rsp) ,heax
23: 89 04 25 f4 ff ff ff mov Yeax ,OxfffffffEFFEEEEF4
2a: 8b 44 24 f0 mov -0x10(%rsp) , heax
2e: 48 8b 4c 24 e0 mov -0x20 (%rsp) ,hrex
33: 89 41 f8 mov %eax,-0x8 (Yircx)
36: 48 8b 44 24 e0 mov -0x20(%rsp) ,hrax
3b: 8b 48 fc mov -0x4 (%rax) ,%ecx
3e: 48 63 40 f8 movslq -0x8(%rax) ,%rax
42: 48 Of af c1 imul %rcx,%rax
46: 48 8b 4c 24 e8 mov -0x18(%rsp) ,%rex
4b: 48 8b 09 mov (%rex) ,hrex
4e: 48 89 4c 24 0 mov %rcx,-0x20 (Y%rsp)
563: «¢c3 retq

We see the same behaviour as for the first example: one or more instructions are not recognized by the
processor, resulting in the crash of the program.

Conclusion
The 32-bit version of the optimized binary does the good operation but with the wrong values since RetDec
wrongly decompiles the function®. For 64-bit, the behaviour is the same as the first example.

The implementation of constant propagation might fix the problem encountered for the 32-bit version.

6.3 Matrices multiplication

For the third and last example, we will focus on a bigger program. This program performs the multiplication
of two randomly generated matrices. It takes their dimensions as arguments. At the end of its execution, it
prints the time taken by the target function to be executed.

The target function is named matrix_mult and its complexity is O(n?), which means that the running time
cubic grows as the input size grows.

The 32- and 64-bit versions of this program are respectively named mmult32 and mmult64. The code is
available at appendix D.5.

The correctness of the resulting matrix has been verified every time the program has been run.

6.3.1 32-bit

To compile the mmult32 program, we use the following command:

gcc -Wall -Werror -00 -m32 mmult.c main.c -o mmult32

Because the program measures the time the target function took to execute, we first do a run of the non-
optimized program:

1We reported this bug on the RetDec’s Github repository (issue #269).

HEIG-VD | Lucas Elisei Page 23

Examples

./mmult32 1000 1000
Elapsed time for matrix multiplication (1000x1000): 9s 357689098ns

As said above, the function is quite complex so its machine code is long and hard to decrypt. However, it is
available at appendix D.6.

The non-optimized function is 298 bytes long and is composed of 96 instructions. Now, we call the optimizer
program to optimize the function with matrices of dimension 1000x1000 (which means 1 billion operations).

./optimizer -f matrix_mult mmult32 1000 1000
Elapsed time for matrix multiplication (1000x1000): 6s 260002895ns

Interesting: the target program doesn't crash, it prints a reasonable measurement and its value is less than
the non-optimized run. Let’s check if the resulting matrix is correct. And... yes, it is. Is this our first win?

Let's joyfully take a look at the optimized function machine code, available at the appendix D.6. It is 339
bytes long and is composed of 144 instructions. How come the optimized function is bigger than the normal
one and still it is faster?

The instructions used might be the answer. Indeed, depending on their complexity, some instructions take
more clock cycle to execute than other. For example, the optimized machine code contains 39 NOP instructions,
which take only one clock cycle to execute.

Some measurements have been done on this example. The non-optimized binary and the optimized one have
been run 30 times each and an average of the execution time for the matrix_mult function (on 1000x1000
matrices) has been calculated:

On average, the non-optimized function took 10.04 seconds execute. On average, the optimized function
took 7.46 seconds to execute. Hence, the optimized function shows a 25% increase in performance.

However, it is interesting to measure the total time that the optimizer took to optimize the target binary.
On average, it took 1.66 to optimize. Hence, counting in the time for optimizer to execute, the runs still
show a 10% increase in performance.

6.3.2 64-bit

As for the previous examples, the 64-bit optimized machine code contains undefined instructions that make
the program crash.

Conclusion

Thanks to this last example, we tested 1iboptimizer on a target program that does a lot of calculation. No
surprises for the 64-bit version: the decompilation is in its early stages so it doesn't give satisfactory results
but the 32-bit version shows a 25% increase in performance which is a really promising result.

More optimization could be done thanks to an LLVM pass named Polly [31].

HEIG-VD | Lucas Elisei Page 24

Conclusion

7 Conclusion

The Moore's law is coming to an end and emerging computer science fields like machine learning or artificial
intelligence require a lot of computational power.

To tackle such problems, we propose a method to optimize the bottlenecks of any binaries by identifying them,
recompiling them specifically for the platform they are being run on and do it without the target program
knowing it.

Through examples, we saw that our solution can enhance a binary performance up to 25%. Unfortunately,
the decompiler that exist nowadays are still in an early stage of development, thus limiting the capacities of
such a method.

Some improvements can be made on the library we developed for this project. For instance, it could be
possible to merge the solicited parts of RetDec and our project to produce a standalone application that
would not depend on RetDec being installed on the machine to run the library.

Another feature could be to save the patched binary to avoid calling the library each time the target process
is being run.

With the constant development of RetDec, it might be possible that the 64-bit support of RetDec could come
in next months. Testing the library with this hypothetically new version of RetDec might demonstrate better
results on 64-bit binaries.

HEIG-VD | Lucas Elisei Page 25

Acknowledgements

8 Acknowledgements

| would like to thank Alberto Dassatti for supervising this project and introducing me to the wonderful
possibilities of recompilation.

| also would like to thank the HEIG-VD for giving me the opportunity to attend the Pass the SALT conference
to meet and discuss with the RetDec team.

A last thank to all my friends and my family for being supportive during this project, taking the time to give
me feedback about my work and being awesome.

HEIG-VD | Lucas Elisei Page 26

References

References

[1]
2]
[3]
[4]
[3]

[6]
[7]
[8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]
[18]

[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]
[27]
[28]
[29]

[30]
31]
32]
[33]
[34]
[35]
[36]

Avast Software, Inc. URL: https://www.avast.com/.

Building a JIT. URL: https://11lvm.org/docs/tutorial/BuildingAJIT1 . .html.
Capstone Framework. URL: https://www.capstone-engine.org.

Dolphin Emulator. URL: https://dolphin-emu.org/.

L. Durfina et al. Design of a Retargetable Decompiler for a Static Platform-Independent Malware
Analysis. URL: http://www.sersc.org/journals/IJSIA/vol5_no4_2011/8.pdf.

Eldad Eilam. Reversing: Secrets of Reverse Engineering. John Wiley & Sons, 2005. URL: https :
//archive.org/details/reversing-secrets-of-reverse-engineering_2.

End of Moore's Law: It's not just about physics. URL: https://www.scientificamerican.com/
article/end-of-moores-law-its-not-just-about-physics/.

Executable and Linkable Format. In: Wikipedia. URL: https://en.wikipedia.org/w/index.php?
title=Executable_and_Linkable_Format&oldid=844622391.

ExecutionEngine class. URL: http://11lvm.org/doxygen/classllvm_1_1ExecutionEngine.html.
GCC, the GNU Compiler Collection. URL: https://gcc.gnu.org/.

GIMPLE. URL: https://gcc.gnu.org/onlinedocs/gccint/GIMPLE. html.

GPLv2. URL: https://opensource.org/licenses/GPL-2.0.

Maurice H. Halstead. Machine-Independent Computer Programming. Spartan Books, 1962.

Adam Husér et al. Automatic C Compiler Generation from Architecture Description Language ISAC.
URL: http://drops.dagstuhl.de/opus/volltexte/2011/3065/pdf/9.pdf.

IDA. URL: https://www.hex-rays.com/products/ida/.

Hex-Rays SA lifak Guilfanov. Decompilers and beyond. 2008. URL: https://www.hex-rays.com/
products/ida/support/ppt/decompilers_and_beyond_white_paper.pdf.

JITEventListener class. URL: http://11lvm.org/doxygen/classllvm_1_1JITEventListener.html.

J. Kfoustek and F. Pokorny. “Reconstruction of instruction idioms in a retargetable decompiler”. In:
2013 Federated Conference on Computer Science and Information Systems. Sept. 2013, pp. 1519-1526.

LLVM. URL: https://1lvm.org.

LLVM Intermediate Representation. URL: https://11lvm.org/docs/LangRef .html.
Mac 68k emulator. URL: https://en.wikipedia.org/wiki/Mac_68k_emulator.
MIT License. URL: https://opensource.org/licenses/MIT.

mmap2. URL: http://man7.org/linux/man-pages/man2/mmap2.2.html.
Opcode. URL: https://en.wikipedia.org/wiki/Opcode.

Maksim Panchenko et al. BOLT: A Practical Binary Optimizer for Data Centers and Beyond. URL:
https://arxiv.org/abs/1807.06735.

Pandora console. URL: https://en.wikipedia.org/wiki/Pandora_(console).
Pass the SALT 2018. URL: https://2018.pass-the-salt.org/.
Pentium Pro. URL: https://en.wikipedia.org/wiki/Pentium_Pro.

Playing StarCraft on an ARM. URL: https://hackaday.com/2014/07/31/playing-starcraft-
on-an-arm/.

Politecnico di Milano. URL: https://www.polimi.it/.

Polly - Polyhedral optimizations for LLVM. URL: https://polly.1llvm.org/.

ptrace. URL: http://man7.org/linux/man-pages/man2/ptrace.2.html.

QEMU. URL: https://www.qgemu.org.

RetDec. URL: https://retdec.com.

RetDec Github Issue 269. URL: https://github.com/avast-tl/retdec/issues/269.
RetDec Github Repository. URL: https://github.com/avast-tl/retdec.

HEIG-VD | Lucas Elisei Page 27

https://www.avast.com/
https://llvm.org/docs/tutorial/BuildingAJIT1.html
https://www.capstone-engine.org
https://dolphin-emu.org/
http://www.sersc.org/journals/IJSIA/vol5_no4_2011/8.pdf
https://archive.org/details/reversing-secrets-of-reverse-engineering_2
https://archive.org/details/reversing-secrets-of-reverse-engineering_2
https://www.scientificamerican.com/article/end-of-moores-law-its-not-just-about-physics/
https://www.scientificamerican.com/article/end-of-moores-law-its-not-just-about-physics/
https://en.wikipedia.org/w/index.php?title=Executable_and_Linkable_Format&oldid=844622391
https://en.wikipedia.org/w/index.php?title=Executable_and_Linkable_Format&oldid=844622391
http://llvm.org/doxygen/classllvm_1_1ExecutionEngine.html
https://gcc.gnu.org/
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://opensource.org/licenses/GPL-2.0
http://drops.dagstuhl.de/opus/volltexte/2011/3065/pdf/9.pdf
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/support/ppt/decompilers_and_beyond_white_paper.pdf
https://www.hex-rays.com/products/ida/support/ppt/decompilers_and_beyond_white_paper.pdf
http://llvm.org/doxygen/classllvm_1_1JITEventListener.html
https://llvm.org
https://llvm.org/docs/LangRef.html
https://en.wikipedia.org/wiki/Mac_68k_emulator
https://opensource.org/licenses/MIT
http://man7.org/linux/man-pages/man2/mmap2.2.html
https://en.wikipedia.org/wiki/Opcode
https://arxiv.org/abs/1807.06735
https://en.wikipedia.org/wiki/Pandora_(console)
https://2018.pass-the-salt.org/
https://en.wikipedia.org/wiki/Pentium_Pro
https://hackaday.com/2014/07/31/playing-starcraft-on-an-arm/
https://hackaday.com/2014/07/31/playing-starcraft-on-an-arm/
https://www.polimi.it/
https://polly.llvm.org/
http://man7.org/linux/man-pages/man2/ptrace.2.html
https://www.qemu.org
https://retdec.com
https://github.com/avast-tl/retdec/issues/269
https://github.com/avast-tl/retdec

References

[37] rev.ng. URL: https://rev.ng.
[38] System call. URL: https://en.wikipedia.org/wiki/System_call.

[39] TFA - Transparent Live Code Offloading on FPGA. URL: http://reds.heig-vd.ch/en/rad/
projects/tfa.

HEIG-VD | Lucas Elisei Page 28

https://rev.ng
https://en.wikipedia.org/wiki/System_call
http://reds.heig-vd.ch/en/rad/projects/tfa
http://reds.heig-vd.ch/en/rad/projects/tfa

Appendices

A Authentication

I, Lucas Elisei, hereby declare having realized this work alone and not having used any other resources than
those quoted in the bibliography

Par la présente, je soussigné, Lucas Elisei, déclare avoir réalisé seul ce travail et ne pas avoir utilisé d'autres
sources que celles citées dans la bibliographie.

Date Signature

Lucas Elisei

HEIG-VD | Lucas Elisei Page 29

Requirements

B Requirements

Since we mainly work on ELF binaries, it is highly recommended to use a Linux distribution to build and run
the project.

The second step is to download a 32-bit toolchain and the LLVM compiler. You can install them with your
preferred package manager. We recommend using the LLVM version 5.

Finally, the most important step, you must download and build RetDec. To do so, clone the RetDec’s Github
repository [36] and follow the build instructions.

HEIG-VD | Lucas Elisei Page 30

© 0 N O C A W N

© 0 NG A W N

==
= o

© 0 N ;A W N R

Simple decompilation example

C Simple decompilation example

include/simple.h

#ifndef LIB SIMPLE H
#define LIB SIMPLE_H

#include <stdint.h>

/*
* Simple addition of two integers.
*
* Returns the result of the addition.
*/

uint32_t simple_add(uint32_t *a, uint32_t *b);

/%
* Simple addition of two integers. The result is stored at the address of the
* third parameter.
*/

void simple_add_ref(uint32_t *a, uint32_t *b, uint32_t *result);

#endif

src/simple.c

#include <stdint.h>
#include "simple.h"

uint32_t simple_add(uint32_t *a, uint32_t *b) {
return *a + *b;

}

void simple_add_ref(uint32_t *a, uint32_t *b, uint32_t #*result) {
*result = *a + *b;

}

src/main.c

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

#include "simple.h"

int main(int argc, char** argv) {
uint32_t a, b;

a = atoi(argv[i]);
b = atoi(argv([2]);

fprintf (stdout, "Result: %u\n", simple_add(&a, &b));

return EXIT_SUCCESS;

HEIG-VD | Lucas Elisei

Page 31

© 0 N O U A W N

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

54
55
56
57
58
59
60
61
62
63
64
65

Simple decompilation example

Makefile

SHELL := /bin/bash

CC = gcc
override CFLAGS += -std=c99 -Wall -Werror -pedantic -Iinclude -m32

LDFLAGS = -m32

CLANG = clang-5.0
LLC = 11c-5.0
LLC_FLAGS = -march=x86

SRC_DIR = src

Logs directory.

LOGS_DIR = logs

Rule to create logs.

LOGS_RULE = $(shell date "+Y/mJd-%H/M/S")
LOGS_PATH := $(LOGS_DIR)/$(LOGS_RULE)

Binary options.

BIN = main

BIN_SRC = $(wildcard $(SRC_DIR)/*.c)

BIN_OBJ = $(patsubst %.c,%.0,$(BIN_SRC))

Arguments to pass to the translated binary.
BIN_ARGS = 4 5

RetDec options.

RETDEC_DIR = $(HOME)/opt/retdec

RETDEC_BIN = $(RETDEC_DIR)/bin/retdec-decompiler.sh
RETDEC_FLAGS = --stop-after bin2llvmir

Functions to decompile (temporary).

RETDEC_FUNCS = simple_add

Only select some functions if asked to.

ifdef RETDEC_FUNCS

RETDEC_FLAGS += --select-functions $(RETDEC_FUNCS)
endif

.PHONY: all clean decompile recompile
all: recompile

decompile: $(BIN)
$ (RETDEC_BIN) $(RETDEC_FLAGS) $(BIN)
@mkdir -p $(LOGS_PATH)
@mv -f $(BIN)* $(LOGS_PATH)/

recompile: decompile
@cp $(SRC_DIR)/$(BIN).o $(LOGS_PATH)/$(BIN).o
@sed -i '/@__x86.get_pc_thunk.ax()/d' $(LOGS_PATH)/$(BIN).c.backend.1ll
$(LLC) $(LLC_FLAGS) $(LOGS_PATH)/$(BIN).c.backend.ll -o $(LOGS_PATH)/$(BIN).c.backend.s
$(CC) $(CFLAGS) -c $(LOGS_PATH)/$(BIN).c.backend.s -o $(LOGS_PATH)/$(BIN).c.backend.o
$(CC) $(LDFLAGS) $(LOGS_PATH)/$(BIN).o $(LOGS_PATH)/$(BIN).c.backend.o -o
— $(LOGS_PATH)/$(BIN) .translated
Q@echo ---
Q@echo Testing translated binary with parameters: $(BIN_ARGS)
@./$(LOGS_PATH)/$(BIN) .translated $(BIN_ARGS)

$(BIN): $(BIN_OBJ)
$(CROSS_COMPILE)$(CC) $(CFLAGS) $~ -o $@

h.o: %h.c
$(CROSS_COMPILE)$(CC) $(CFLAGS) -c $< -o $@

clean:
rm -rf $(BIN_OBJ)
rm -rf $(BIN)=*

HEIG-VD | Lucas Elisei

Page 32

© 0w N U A W N e

-
o

11

liboptimizer

D 1liboptimizer

D.1 elfparser

elfparser.c

/%
* File: elfparser.c
*

* Created by: Lucas Eliset <lucas.elisei@heig-vd.ch>

*/

#include <elf.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <sys/mman.h>
#include "debug.h"
#include "liboptimizer.h"

#include "elfparser.h”

typedef struct {

uint8_t *mem; // Binary mapped into memory

long file_size; // Binary size

uint8_t is64; // 32— or 64-bit

uint64_t sh_off; // Points to the start of the section header table
uintl6_t sh_num; // Number of entries in the section header table
uint16_t sh_entsize; // Section header size

uint16_t sh_strndx; // Index of SH String table.
uint64_t sym_off; // Symbol table offset
uint64_t sym_size; // Symbol table size
uint64_t str_off; // String table size

} elf_file_t;

static void _elf_dump_file(elf_file_t *elf) {

DBG("=== Printing elf_file_t at Ox%" PRIXPTR "\n", (uintptr_t)elf);
DBG(" is64...... A PRIu8 "\n", elf->is64);

DBG(" sh_off....: 0x)" PRIX64 "\n", elf->sh_off);

DBG(" sh_num....: %" PRIul6é "\n", elf->sh_num);

DBG(" sh_entsize: %" PRIul6é "\n", elf->sh_entsize);
DBG(" sh_strndx.: %" PRIul6 "\n", elf->sh_strndx);

DBG(" sym_off...: OxJ" PRIX64 "\n", elf->sym_off);
DBG(" sym_size..: %" PRIu64 "\n", elf->sym_size);
DBG(" str_off...: 0x)" PRIX64 "\n", elf->str_off);
DBG(" \n\n");

}

static char *_elf_resolve_symbol(elf_file_t *elf, uint64_t address) {
int i;
size_t offset;
// Symbol header for 32- and 64-bit
E1£32_Sym sym32;
E1f64_Sym sym64;
char *symbol;
size_t sym_len;

// ELF32
if (elf->is64 == 0) {
// Iterate over all symbols.
for (i = 0; i * sizeof (E1£32_Sym) < elf->sym_size; ++i) {
// Calculate offset and get symbol.
offset = elf->sym_off + (sizeof (E1£32_Sym) * i);
memmove (&sym32, elf->mem + offset, sizeof (E1£32_Sym));

// If the symbol is at the address we are looking for.
if (sym32.st_value == address) {
// Sanity check.

if (sym32.st_name == 0) {

HEIG-VD | Lucas Elisei

Page 33

110
111
112
113
114
115
116
117
118
119

liboptimizer

return NULL;
}

// Get symbol size for memory allocation.
offset = elf->str_off + sym32.st_name;
sym_len = strlen((char *)(elf->mem + offset));

// Allocate memory for symbol.
symbol = (char *)calloc(l, sizeof(char) * (sym_len + 1));
if (symbol == NULL) {
return NULL;
}

// Copy symbol.
sprintf (symbol, "%s", (char *)(elf->mem + offset));

}
}
}
// ELF6
else {
// Iterate over all symbols.
for (i = 0; i * sizeof (E1f64_Sym) < elf->sym_size; ++i) {
// Calculate offset and get symbol.
offset = elf->sym_off + (sizeof (E1f64_Sym) * i);
memmove (&sym64, elf->mem + offset, sizeof (E1f64_Sym));
if (sym64.st_value == address) {
// Sanity check.
if (sym64.st_name == 0) {
return NULL;
}
// Get symbol size for memory allocation.
offset = elf->str_off + sym64.st_name;
sym_len = strlen((char *)(elf->mem + offset));
// Allocate memory for symbol.
symbol = (char #*)calloc(l, sizeof(char) * (sym_len + 1));
if (symbol == NULL) {
return NULL;
}
// Copy symbol.
sprintf (symbol, "/%s", (char *)(elf->mem + offset));
}
}
}

return symbol;

}

static uint64_t _elf_resolve_address(elf_file_t *elf, const char *symbol)
int i;
size_t offset;
// Symbol header for 32- and 64-bit.
E1£32_Sym sym32;
E1f64_Sym sym64;

// ELF32
if (elf->is64 == 0) {
// Iterate over all symbols.
for (i = 0; i * sizeof (E1£32_Sym) < elf->sym_size; ++i) {
// Calculate offset and get symbol struct.
offset = elf->sym_off + (sizeof (E1£32_Sym) * i);
memmove (&sym32, elf->mem + offset, sizeof (E1£32_Sym));

// Sanity check.
if (sym32.st_name == 0) {
continue;

}

// Calculate symbol offset.

offset = elf->str_off + sym32.st_name;

HEIG-VD | Lucas Elisei

Page 34

150

211

liboptimizer

// If the symbol is equal to the one we are looking for, return
// its wvalue.
if (!strcmp((char *)(elf->mem + offset), symbol)) {

return (uint64_t)sym32.st_value;

}
}
}
// ELF6J
else {
// Iterate over all symbols.
for (i = 0; i * sizeof (E1f64_Sym) < elf->sym_size; ++i) {
// Calculate offset and get symbol.
offset = elf->sym_off + (sizeof (E1£64_Sym) * i);
memmove (4sym64, elf->mem + offset, sizeof(E1f64_Sym));
// Sanity check.
if (sym64.st_name == 0) {
continue;
}
// Calculate symbol offset.
offset = elf->str_off + sym64.st_name;
// If the symbol is equal to the one we are looking for, return
// its wvalue.
if (!strcmp((char *)(elf->mem + offset), symbol)) {
return (uint64_t)sym64.st_value;
}
}
}
return O;

}

static int _elf_resolve_sections(elf_file_t *elf) {
int i;
size_t offset;
uint64_t shstrtab_off;
// Section header for 32- and 64-bit.
E1£32_Shdr sec32;
E1f64_Shdr sec64;

// ELF32
if (elf->is64 == 0) {
// We need to get the Section Header STRing TABle offset before others.
offset = elf->sh_off + (elf->sh_entsize * elf->sh_strndx);
memmove (4sec32, elf->mem + offset, sizeof (E1f32_Shdr));
shstrtab_off = sec32.sh_offset;

// Iterate over all section headers.
for (i = 0; i < elf->sh_num; ++i) {
// Calculate offset and get section header.
offset = elf->sh_off + (elf->sh_entsize * i);
memmove (4sec32, elf->mem + offset, sizeof (E1f32_Shdr));

switch (sec32.sh_type) {
// Static symbols table
case SHT_SYMTAB:
elf->sym_off = sec32.sh_offset;
elf->sym_size = sec32.sh_size;
break;

// String table. Since there are more than one string table, we
// have to be sure to get the .strtab ome.
case SHT_STRTAB:
if (!strcmp((char *)(elf->mem + shstrtab_off + sec32.sh_name), ".strtab")) {
elf->str_off = sec32.sh_offset;
}

break;

default:

break;

HEIG-VD | Lucas Elisei

Page 35

liboptimizer

}
}
}
// ELF6
else {
// We need to get the Section Header STRing TABle offset before others.
offset = elf->sh_off + (elf->sh_entsize * elf->sh_strndx);
memmove (&sec64, elf->mem + offset, sizeof (E1f64_Shdr));
shstrtab_off = sec64.sh_offset;
// Iterate over all section headers.
for (i = 0; i < elf->sh_num; ++i) {
// Calculate offset and get section header.
offset = elf->sh_off + (elf->sh_entsize * i);
memmove (&sec64, elf->mem + offset, sizeof (E1f64_Shdr));
switch (sec64.sh_type) {
// Static symbols table.
case SHT_SYMTAB:
elf->sym_off = sec64.sh_offset;
elf->sym_size = sec64.sh_size;
break;
// String table.
case SHT_STRTAB:
if (!strcmp((char *)(elf->mem + shstrtab_off + sec64.sh_name), "
elf->str_off = sec64.sh_offset;
}
break;
default:
break;
}
}
}
return O;

}

static int _elf_read_header(elf_file_t *elf) {
// The first bytes of the header are same-sized for 32- and 64-bit archs.
// To identify the file's class and magic number, we assume it's 32-bit
E1£32_Ehdr hdr32;
E1f64_Ehdr hdré4;
int rc;

// Retrieve ELF header.
memmove (£hdr32, elf->mem, sizeof (E1f32_Ehdr));

// Check that the file is a wvalid ELF.
rc = (hdr32.e_ident [EI_MAGO] == ELFMAGO &&
hdr32.e_ident [EI_MAG1] == ELFMAG1 &&
hdr32.e_ident [EI_MAG2] == ELFMAG2 &&
hdr32.e_ident [EI_MAG3] == ELFMAG3);
if (rc == 0) {
fprintf (stderr, "[liboptimizer] ERROR: File is not a valid ELF\n");

rc = -2;
goto _elf_not_valid;
}

// Check ELF class.
switch (hdr32.e_ident[EI_CLASS]) {
case ELFCLASS32:
elf->is64 = 0;
elf->sh_off = (uint64_t)hdr32.e_shoff;
elf->sh_num = hdr32.e_shnum;
elf->sh_entsize = hdr32.e_shentsize;
elf->sh_strndx = hdr32.e_shstrndx;
break;
case ELFCLASS64:
memmove (¥hdr64, elf->mem, sizeof (E1f64_Ehdr));

elf->is64 = 1;

.strtab")) {

HEIG-VD | Lucas Elisei

Page 36

311

335

353

liboptimizer

elf->sh_off = hdr64.e_shoff;
elf->sh_num = hdr64.e_shnum;
elf->sh_entsize = hdr64.e_shentsize;
elf->sh_strndx = hdr64.e_shstrndx;

break;
default:
fprintf(stderr, "[liboptimizer] ERROR: Invalid ELF class\n");
rc = -2;
goto _elf_not_valid;
}
rc = 0;

_elf _not_valid:
return rc;

}

static elf_file_t *_elf_init(const char *path) {
elf_file_t xelf;
FILE *file;

// Allocate memory.
elf = (elf_file_t #*)calloc(l, sizeof(elf_file_t));
if (elf == NULL) {

perror (" [liboptimizer] calloc()");

elf = NULL;
goto _failed_calloc;
}

// Open binary.

file = fopen(path, "rb");

if (file == NULL) {
perror (" [liboptimizer] fopen()");

elf = NULL;

goto _failed_fopen;
}
// Get size.

fseek(file, OL, SEEK_END);
elf->file_size = ftell(file);

// Map binary into memory.
elf->mem = mmap(NULL, elf->file_size, PROT_READ, MAP_PRIVATE, fileno(file), 0);
if (elf->mem == NULL) {

perror (" [liboptimizer] mmap()");

elf = NULL;
goto _failed_mmap;

}
fclose(file);
return elf;

_failed_mmap:
fclose(file);
_failed_fopen:
free(elf);
_failed_calloc:
return NULL;
}

static elf_file_t *_parse_elf(const char *path) {
elf_file_t *elf;
int rc;

elf = _elf_init(path);
if (elf == NULL) {
fprintf(stderr, "[liboptimizer] ERROR: Failed to allocate memory\n");

goto _failed_init;

HEIG-VD | Lucas Elisei

Page 37

liboptimizer

358 }

359

360 rc = _elf_read_header(elf);

361 if (rc < 0) {

362 fprintf (stderr, "[liboptimizer] ERROR: Error while parsing ELF\n");
363

364 goto _failed_read_header;

365 }

366

367 rc = _elf_resolve_sections(elf);

368 if (rc < 0) {

369 fprintf (stderr, "[liboptimizer] ERROR: Error while resolving sections\n");
370

371 goto _failed_resolve_sections;

372 }

373

374 return elf;

375

376 _failed_resolve_sections:

377 munmap (elf->mem, elf->file_size);

378 _failed_read_header:

379 free(elf);

380 _failed_init:

381 return NULL;

382 }

383

384 char *get_symbol_at_address(const char *path, uint64_t address) {
385 elf_file_t xelf;

386 char *symbol;

387

388 elf = _parse_elf (path);

389 if (elf == NULL) {

390 symbol = NULL;

391

392 goto _failed_parse;

393 }

394

395 _elf_dump_file(elf);

396

397 symbol = _elf_resolve_symbol(elf, address);
308 if (symbol == NULL) {

399 fprintf(stderr, "[liboptimizer] ERROR: Error while retrieving symbols info\n");
400

401 goto _failed_sym_info;

402 }

403

404 _failed_sym_info:

405 munmap (elf->mem, elf->file_size);

406 free(elf);

407 _failed_parse:

408 return symbol;

409 }

410

411 uint64_t get_symbol_address(const char *path, const char *symbol) {
412 elf file_t *elf;

413 uint64_t address;

414

415 elf = _parse_elf (path);

416 if (elf == NULL) {

417 address = 0;

418

419 goto _failed_parse;

420 }

421

422 _elf_dump_file(elf);

423

424 address = _elf_resolve_address(elf, symbol);
425 if (address == 0) {

426 fprintf (stderr, "[liboptimizer] ERROR: Error while retrieving address\n");
427

428 goto _failed_resolve_addr;

429 }

430

HEIG-VD | Lucas Elisei Page 38

435

453

liboptimizer

_failed_resolve_addr:
munmap (elf->mem, elf->file_size);
free(elf);

_failed_parse:
return address;

}
int8_t is64bit(const char *path) {
elf _file_t xelf;
int8_t is64;
elf = _parse_elf(path);
if (elf == NULL) {
fprintf(stderr, "[liboptimizer] ERROR: Failed to allocate memory\n");

return -1;

}
is64 = (int8_t)elf->is64;

munmap (elf->mem, elf->file_size);
free(elf);

return is64;

HEIG-VD | Lucas Elisei

Page 39

liboptimizer

D.2 retdec

retdec.c

/*
* File: retdec.c
*
* Created by: Lucas Elisei <lucas.elisei@heig-vd.ch>

*/

#define _POSIX_C_SOURCE 200809L
#define _XOPEN_SOURCE 500

#include <fcntl.h>
#include <ftw.h>

#include <libgen.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>

#include "debug.h"
#include "liboptimizer.h"
#include "retdec.h”
#include "TFAJITWrapper.h"

int _remove_file(const char *fpath, const struct stat *sb, int typeflag, struct FIW *ftwbuf)
int rv = remove(fpath);

if (rv) {
perror ((char*)fpath);
}

return rv;

}

static int _compile_llvmir(process_info_t *process, char *tmp_directory) {
int rc;

rc = compile_llvmir_file(process, tmp_directory);

return rc;

}

static int _execute_script(process_info_t #*process, char *tmp_directory) {
int log_£d;
char log_path[PATH_MAX];
char tmp_binary[PATH_MAX];
pid_t pid;

sprintf (log_path, "/s/decompile.log", tmp_directory);
sprintf (tmp_binary, "Us/%s", tmp_directory, basename((char #*)process->path));

log_fd = open(log_path, O_RDWR | O_CREAT, 0666);
if (log_fd < 0) {
perror (" [liboptimizer] open()");

return -1;

}

pid = fork();

if (pid == 0) {
dup2(log_fd, STDOUT_FILENO);
dup2(log_fd, STDERR_FILENO);
close(log_£d);

execl("/bin/bash", "sh", RETDEC_DECOMPILER,

"--stop-after", "bin2llvmir",

HEIG-VD | Lucas Elisei

Page 40

105
106

108
109
110
111
112

liboptimizer

"--select-functions", process->function_name,
"--output", tmp_binary,
process->path, NULL);

exit(0);
}

waitpid(pid, NULL, 0);

return O;

int retdec_recompile(process_info_t #*process) {
// Store return codes.
int rc;
// Temporary directory name.
char *tmp_dir;
// Buffer to store temporary directory template
char template_buffer[strlen(TMP_DIR_TEMPLATE) + 1];

sprintf (template_buffer, TMP_DIR_TEMPLATE);

// Create a temporary directory to store temporary files.
tmp_dir = mkdtemp(template_buffer) ;
if (tmp_dir == NULL) {

perror (" [liboptimizer] mkdtemp");

return -1;

}
DBG("Created %s temporary directory\n", tmp_dir);

// Ezecute RetDec's script into temporary directory.

rc = _execute_script(process, tmp_dir);

if (rc !=0) {
fprintf(stderr, "[liboptimizer] ERROR: An error occured while executing decompilation
— script\n");

goto _delete_tmp_dir;
}

// Call JIT compiler.
rc = _compile_llvmir(process, tmp_dir);
if (rc !'= 0) {

— function\n");

goto _delete_tmp_dir;

rc = 0;

_delete_tmp_dir:
#1fndef LIBOPTIMIZER_ DEBUG
if (nftw(tmp_dir, _remove_file, 64, FTW_DEPTH | FTW_PHYS)) {
perror (" [liboptimizer] ntfw()");
}
#endif

return rc;

fprintf(stderr, "[liboptimizer] ERROR: An error occured during compilation of the optimized

HEIG-VD | Lucas Elisei

Page 41

© 0 N O U A W N

=
= o

12

liboptimizer

D.3 jit

TFAJITEventListener.hpp

/%
* File: TFAJITEventListener.hpp
*
* Created by: Lucas Elisei <lucas.elisei@heig-vd.ch>

*/

#ifndef __LIBOPTIMIZER_INCLUDE_ TFAJITEVENTLISTENER_H _
#define __LIBOPTIMIZER INCLUDE_TFAJITEVENTLISTENER_H. _

#include "llum/EzecutionEngine/JITEventListener.h"”
#include "llum/Object/SymbolSize.h"

#include <iostream>
#include <map>

using namespace llvm;
using namespace llvm::object;

typedef struct {
uint64_t address;
uint64_t size;

} symbol_info_t;

class TFAJITEventListener : public JITEventListener {

private:
// Map used to store symbols information.
std::map<std::string, symbol_info_t *> symbolsMap;

public:
// Default constructor.
TFAJITEventListener () {}
// Default destructor.
~TFAJITEventListener() {
for (auto it = symbolsMap.begin(); it != symbolsMap.end(); ++it) {
free(it->second);
}
}

// Function called when the JIT has emitted an object file.

virtual void NotifyObjectEmitted(const ObjectFile &obj, const RuntimeDyld::LoadedObjectInfo &L) {

OwningBinary<ObjectFile> OWOF = L.getObjectForDebug(obj);
ObjectFile &0F = *0WOF.getBinary();

// Iterate over symbols and their respective size.

for (const std::pair<SymbolRef, uint64_t> &pair : computeSymbolSizes(0F)) {
SymbolRef symbolRef = std::get<0>(pair);
uint64_t size = std::get<l1>(pair);

// Symbol with an empty size aren't interesting.
if (size > 0) {
symbol_info_t *symbol_info;

// Allocate memory for symbol_info.
symbol_info = (symbol_info_t *)calloc(l, sizeof(symbol_info_t));
if (symbol_info == NULL) {

std::cerr << "ERROR: Could not allocate memory" << std::endl;

continue;

}

// Retrieve address of symbol.
Expected<uint64_t> eAddr = symbolRef.getAddress();
if (leAddr) {

continue;

}

// Assign fields.

HEIG-VD | Lucas Elisei

Page 42

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

© W N e U A W N e

-
o

11

liboptimizer

symbol_info->size = size;
symbol_info->address = *eAddr;

// Insert symbol info into map.
symbolsMap [symbolRef .getName () .get () .str()] = symbol_info;

}

// Returns a pointer on a symbol_info struct corresponding to the argument.
// Returns NULL if the symbol could not be found.
symbol_info_t *GetSymbolInfo(const std::string symbol) {

return symbolsMap[symbol];

}
};
#endif
TFAJITWrapper.cpp
/%
* File: TFAJITWrapper.cpp
*

* Created by: Lucas Elisei <lucas.elisei@heig-vd.ch>

*/

#include "llum/EzecutionEngine/EzecutionEngine.h"
#include "llum/IR/Module.h"

#include "llum/IR/Verifier.h"

#include "llum/IRReader/IRReader.h”

#include "llum/Support/CodeGen.h"

#include "1lum/Support/SourceMgr.h"

#include <climits>
#include <cstdlib>
#include <iostream>

#include "debug.h"
#include "liboptimizer.h"
#include "TFAJITEventListener.hpp"

using namespace llvm;
extern "C" {

int compile_llvmir_file(process_info_t *process, char *tmp_path) {
SMDiagnostic err;
static LLVMContext context;
char path[PATH_MAX];
char command [PATH_MAX];

// Initialize targets.
LLVMInitializeAllTargets();
LLVMInitializeAllTargetMCs();
LLVMInitializeAllTargetInfos();
LLVMInitializeAllAsmPrinters();
LLVMInitializeAllAsmParsers();
LLVMInitializeAllDisassemblers();

sprintf (path, "%s/%s.backend.11l", tmp_path, basename(process->path));
// Remove occurences of __xz86.get_pc_thunk.ax() function into LLVM IR file.
sprintf (command, "sed -i '/@__x86.get_pc_thunk.ax/d' %s", path);

system(command) ;

// Parse LLVM IR file.
std: :unique_ptr<Module> module = parseIRFile(path, err, context);

if (!module) {
err.print(process->argv[0], llvm::errs());

HEIG-VD | Lucas Elisei

Page 43

105

108
109
110
111
112

liboptimizer

return -1;

}

// Verify that the module is wvalid.
if (verifyModule(*module)) {
std::cerr << "ERROR: The LLVM IR module is not valid" << std::endl;

return -2;

}

// Initialize EzecutionEngine as a JIT Compiler.
StringRef *arch;
if (process->is64 == 0) {
arch = new StringRef("x86");
} else {
arch = new StringRef ("x86-64");
}
ExecutionEngine *EE = EngineBuilder(std::move(module))
.setEngineKind (EngineKind: : JIT)
.setMArch (*arch)
.setOptLevel (CodeGenOpt: :Level: :Aggressive)
.setVerifyModules (true)
.create();

// Initialize JIT Event Listener.
TFAJITEventListener *EL = new TFAJITEventListener();

// Register JITEventListener.
EE->RegisterJITEventListener(EL);

// Compile module
EE->finalizeObject();

DBG("=== ExecutionEngine %s\n", "dump");
DBG(" triple: %s\n", EE->getTargetMachine()->getTargetTriple().str().c_str());
DBG(" cpu...: %s\n", EE->getTargetMachine()->getTargetCPU().str().c_str());

DBG(" 1layout: %s\n", EE->getDataLayout().getStringRepresentation().c_str());

// Retrieve symbol info.
std: :string symbol_str(process->function_name) ;
symbol_info_t *symbol_info = EL->GetSymbolInfo(symbol_str);
if (symbol_info == NULL) {
std::cerr << "ERROR: Could not retrieve recompiled symbol info" << std::endl;

return -3;

}

symbol_info->address = EE->getFunctionAddress(process->function_name) ;

// Assign fields.
process->optimized_function_size = symbol_info->size;

process->optimized_function = (uint8_t *)calloc(process->optimized_function_size, sizeof(uint8_t));

if (process->optimized_function == NULL) {
std::cerr << "ERROR: Could not allocate memory for optimized function" << std::endl;
}
memcpy (process->optimized_function, (void *)symbol_info->address,
— process->optimized_function_size);

return O;

} // extern "C"

HEIG-VD | Lucas Elisei

Page 44

© 0 N O U A W N

I e S
w N = O

14

liboptimizer

D.4 1live-patcher

live-patcher.c

/%

* File: ptrace.c

*

* Created by: Lucas Elisei <lucas.elisei@heig-vd.ch>

*/
#define _GNU_SOURCE

#include <fcntl.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include <sys/mman.h>
#include <sys/ptrace.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/user.h>
#include <sys/wait.h>

#include "debug.h"
#include "liboptimizer.h"

#define MMAP2_SYSCALL_X32 192
#define MMAP2_SYSCALL_X64 9

/*
* Creates an assembly unconditional jump for 32-bit binaries.
*

* MOV _A_, Jeaz

* JMP *Jeaz

*/

#define MAKE_JUMP32(_A_) {
0zB8,
((unsigned char *)&(_A_))[0],
((unsigned char *)&(_A_))[1],
((unsigned char *)&(_A_))[2],
((unsigned char *)&(_A_))[3],
O0zFF, OzEO

— e — —

}

/*
* Creates an assembly unconditional jump for 64-bit binaries.
*

* MOVABS _A_, Jraz

* JMP *Jiraz

*/

#define MAKE_JUMP64(_A_) {
0x48, 0xB8,
((unsigned char *)&(_A_))[0],
((unsigned char *)&(_A_))[1],
((unsigned char *)&(_A_))[2],
((unsigned char *)&(_A_))[3],
((unsigned char *)&(_A_))[4],
((unsigned char *)&(_A_))[5],
((unsigned char *)&(_A_))[6],
((unsigned char *)&(_A_))[7],

— e e e e e —

OzFF, 0zEO
}
/%
* Methods used for debugging purposes.
*/

#ifdef LIBOPTIMIZER_DEBUG
void print_regs(process_info_t *process) {

struct user_regs_struct regs;

HEIG-VD | Lucas Elisei

Page 45

69
70
71
72
73

74

76
77
78
79
80
81
82
83
84
85

liboptimizer

ptrace (PTRACE_GETREGS, process->pid, NULL, ®s);

DBG("Registers:\n");

DBG(" ebp: Ox%" PRIX64 " (0x%11X)\n", ptrace(PTRACE_PEEKDATA, process->pid, regs.rbp, NULL),
< regs.rbp);

DBG(" esp: Ox%" PRIX64 " (0x)11X)\n", ptrace(PTRACE_PEEKDATA, process->pid, regs.rsp, NULL),
< regs.rsp);

}

void print_stack(process_info_t *process) {
long addr, value;
int size;
struct user_regs_struct regs;

ptrace (PTRACE_GETREGS, process->pid, NULL, ®s);
fprintf (stdout, "Stack:");

if (process->is64 == 0) {
size = 4;

} else {
size = 8;

}

for (addr = regs.rbp; addr > ((regs.rsp - 0x30) & ~OxFFu); addr -= size) {
if (((addr ~ regs.rbp) & OxFu) == 0) {
fprintf (stdout, "\n");
DBG("0x%0*1X: ", size * 2, addr);
}
value = ptrace(PTRACE_PEEKDATA, process->pid, addr, NULL);
if (addr == regs.rsp) {
fprintf (stdout, "*");
}
fprintf(stdout, "O0x%0*1X ", size * 2, value);
}
fprintf (stdout, "\n");
}

void debug(process_info_t *process) {
struct user_regs_struct regs;
char c;
uint64_t address;

address = process->codesegment_address + process->function_offset;

ptrace (PTRACE_GETREGS, process->pid, NULL, ®s);

while (regs.rip != address) {
ptrace (PTRACE_SINGLESTEP, process->pid, NULL, NULL);
waitpid(process->pid, NULL, 0);
ptrace (PTRACE_GETREGS, process->pid, NULL, ®s);

}

DBG("=== DEBUG COMMANDS ===\n");

DBG(" p : print EBP and ESP registers\n");
DBG(" s : print stack\n");

DBG(" n : execute next instruction\n");
DBG(" q : continue execution\n");

DBG (" \n");

DBG("Got at Ox%" PRIX64 "\n", address);

do {
ptrace (PTRACE_GETREGS, process->pid, NULL, ®s);

DBG("=== 0x70811X (eip)\n", regs.rip);
DBG("> ");

c = getchar();

while(getchar() != '\n');

switch (c) {

case 'p'

p:

print_regs(process);

HEIG-VD | Lucas Elisei

Page 46

211

liboptimizer

break;

case 's':
print_stack(process);
break;
case 'n':
ptrace (PTRACE_SINGLESTEP, process->pid, NULL, NULL);
waitpid(process->pid, NULL, 0);

break;

default:
break;
}
} while (c != 'q');
}
#endif

/*
* Waits for a syscall.
*
* Returns '0O' if the child stopped on a syscall. Returns '1' if the child
* exited.
*/
static int _wait_for_syscall(pid_t pid) {
int status;

while (1) {
// Tell ptrace to wait for a syscall.
ptrace (PTRACE_SYSCALL, pid, 0, 0);

// Wait for child to be stopped.
waitpid(pid, &status, 0);

// Check status.
if (WIFSTOPPED(status) && WSTOPSIG(status) & 0x80) {

return O;
}
if (WIFEXITED(status)) {
return 1;
}
}
}
/%
* Update the address of the code segment of the given process in its struct.
*

* On success, returns 0. Otherwise, prints an error and returns '-1'.
*/
static int _get_codesegment_address(process_info_t *process) {
int rc;
char file_path[255];
char seg_addr_str[17];
long seg_addr;
FILE *file;

// Get path of the “maps’ file for the given pid.
snprintf(file_path, sizeof(file_path), "/proc/%d/maps", process->pid);

file = fopen(file_path, "r");
if (file == NULL) {
perror (" [liboptimizer] fopen()");

return -1;

}

// For now, we only retrieve the first 16 characters. Might need to check
// permissions and all to be sure we parse the code segment.
rc = fread(seg_addr_str, 1, sizeof(seg_addr_str) - 1, file);
if (rec < 0) {
perror("[liboptimizer] fread()");

HEIG-VD | Lucas Elisei

Page 47

215

liboptimizer

return -1;
}
// Append end-of-string character.
seg_addr_str[sizeof (seg_addr_str) - 1] = 0;

fclose(file);

// Convert string to long.
seg_addr = strtol(seg_addr_str, NULL, 16);

// Assign value.
process->codesegment_address = seg_addr;

return O;
}
/*
* Replaces the memory of the child process to hook the ~func_addr” function
* with the “free_addr™ function.
*

* Returns 'O' on success. Otherwise, prints an error and returns '-1'.
*/
static int _replace_mem(process_info_t *process) {
unsigned char jump_32[] = MAKE_JUMP32(process->freesegment_address) ;
unsigned char jump_64[] = MAKE_JUMP64(process->freesegment_address);

int i, rc;
uint64_t old_func_addr = process->function_offset + process->codesegment_address;

// Put the new function into free allocated space.
for (i = 0; i < process->optimized_function_size; i += 4) {
rc ptrace (PTRACE_POKEDATA,
process->pid,
(void *)process->freesegment_address + i,
((unsigned int *)process->optimized_function)[i / 41);
if (rc < 0) {
perror (" [liboptimizer] PTRACE_POKEDATA");

return -1;
}

// 32-bit
if (process->is64 == 0) {
for (i = 0; i < sizeof (jump_32); i += 4) {
rc = ptrace(PTRACE_POKEDATA,
process->pid,
(void *)old_func_addr + i, ((unsigned int *)jump_32)[i / 4]1);
if (rc < 0) {
perror (" [liboptimizer] PTRACE_POKEDATA");

return -1;
}
}
}
// 64-bit
else {
for (i = 0; i < sizeof(jump_64); i += 4) {
rc = ptrace(PTRACE_POKEDATA,
process->pid,
(void *)old_func_addr + i, ((unsigned int *)jump_64)[i / 41);
if (rc < 0) {
perror (" [liboptimizer] PTRACE_POKEDATA");
return -1;
}
}
}
return O;
}
/%

HEIG-VD | Lucas Elisei

Page 48

311

350

354

liboptimizer

*
*
*
*

Injects a 'mmap2' syscall into a child process.

On success, returns the address of the newly allocated memory segment.
If the child process unexpectedly stopped, returns '-1'.

*/

static int _inject_mmap(process_info_t *process) {

struct user_regs_struct old_regs, new_regs;
int rc;

if (_wait_for_syscall(process->pid) != 0) {
return -1;

}

rc = ptrace(PTRACE_GETREGS, process->pid, 0, &old_regs);
if (rc < 0) {
perror (" [liboptimizer] PTRACE_GETREGS");

return -1;

}

memcpy (4new_regs, &old_regs, sizeof (struct user_regs_struct));

// 32-bit.

if (process->is64 == 0) {
// Registers for 32-bit binary on 64-bit machine.
new_regs.rax = MMAP2_SYSCALL_X32;
new_regs.rbx = 0;
new_regs.rcx = process->optimized_function_size;
new_regs.rdx = PROT_READ | PROT_WRITE | PROT_EXEC;
new_regs.rsi = MAP_PRIVATE | MAP_ANONYMOUS;
new_regs.rdi = -1;
new_regs.rbp = 0;
new_regs.orig_rax = MMAP2_SYSCALL_X32;

}

// 64-bit.

else {
// Registers for 64-bit binary on 64-bit machine.
new_regs.rax = MMAP2_SYSCALL_X64;
new_regs.rdi = 0;
new_regs.rsi = process->optimized_function_size;
new_regs.rdx = PROT_READ | PROT_WRITE | PROT_EXEC;
new_regs.r10 = MAP_PRIVATE | MAP_ANONYMOUS;
new_regs.r8 = -1;
new_regs.r9 = 0;
new_regs.orig_rax = MMAP2_SYSCALL_X64;

}

rc = ptrace(PTRACE_SETREGS, process->pid, NULL, &new_regs);
if (rc < 0) {
perror (" [liboptimizer] PTRACE_SETREGS");

return -1;

rc = ptrace(PTRACE_SINGLESTEP, process->pid, NULL, NULL);
if (rc < 0) {
perror (" [liboptimizer] PTRACE_SINGLESTEP");

return -1;

}
waitpid(process->pid, NULL, 0);
rc = ptrace(PTRACE_GETREGS, process->pid, NULL, &new_regs);
if (rc < 0) {
perror (" [liboptimizer] PTRACE_GETREGS") ;

return -1;
rc = ptrace(PTRACE_SETREGS, process->pid, NULL, &old_regs);

if (rc < 0) {
perror (" [liboptimizer] PTRACE_SETREGS");

HEIG-VD | Lucas Elisei

Page 49

411

liboptimizer

return -1;

}

process->freesegment_address = new_regs.rax;

return O;
}
/*
* Main function of parent process.
*

* On success, returns 0. Otherwise, prints an error message and returns the
* corresponding value.
*/
static int _do_parent(process_info_t #*process) {
int rc;

// Wait for child to be stopped.
waitpid(process->pid, NULL, 0);

// Set options for ptrace.
ptrace (PTRACE_SETOPTIONS, process->pid, O, PTRACE_O_TRACESYSGOOD) ;

// Get address of the function to replace in the code segment.
rc = _get_codesegment_address(process);
if (rc < 0) {
fprintf(stderr, "[liboptimizer] ERROR: Failed to get code segment address\n");

return -1;

}

// Allocate new memory segment.
rc = _inject_mmap(process);
if (rc < 0) {
fprintf(stderr, "[liboptimizer] ERROR: Failed to allocate memory segment\n");

return -2;
}
return 0;
}
/%
* Launches the child process.
*/

static int _do_child(process_info_t *process) {
ptrace (PTRACE_TRACEME, 0, NULL, NULL);

return execvp(process->path, process->argv);

int patcher_attach_process(process_info_t *process) {
process->pid = fork();

if (process->pid != 0) {
DBG("child pid: %d\n", process->pid);
return _do_parent (process);

} else {
return _do_child(process);

}

}

int patcher_modify_process(process_info_t *process) {
int rc;
rc = _replace_mem(process);

if (rec < 0) {
fprintf(stderr, "[liboptimizer] ERROR: Failed to replace process memory\n");

return -1;

HEIG-VD | Lucas Elisei

Page 50

liboptimizer

// NOTE: Uncomment if you want to debug the child process execution step
// by step.

#ifdef LIBOPTIMIZER_DEBUG
debug(process) ;

#endif

return O;

}

int patcher_continue_exec(process_info_t *process, bool wait_for_exit) {
int rc;

// Continue child ezecution.
rc = ptrace(PTRACE_CONT, process->pid, NULL, NULL);
if (rc < 0) {

perror (" [liboptimizer] PTRACE_CONT");

return -1;

}

// Wait for child to quit if asked to.

if (wait_for_exit) {
waitpid(process->pid, NULL, 0);

}

return O;

HEIG-VD | Lucas Elisei

Page 51

© 0 N O U A W N

liboptimizer

D.5 1liboptimizer

liboptimizer.c

File: liboptimizer.c
Created by: Lucas Elisei <lucas.elisei@heig-vd.ch>

Main entry point of the library.
*/

#include <inttypes.h>
#include <limits.h>
#include <stdlib.h>

#include "debug.h"
#include "liboptimizer.h"
#include "live-patcher.h"”
#include "elfparser.h”
#include "retdec.h"”
#include "utils.h"

static int _recompile_function(process_info_t #*process) {

}

return retdec_recompile(process);

char *symbol_at_address(const char *path, uint64_t address) {

}

return get_symbol_at_address(path, address);

process_info_t *init_process(int argc, char **argv, const char *function_name) {

// Pointer to process information.
process_info_t *process;

// Store return codes.

int rc;

// Absolute path of the binary.
char absolute_path[PATH_MAX];

// Allocate memory for “process_info_t~ struct and set the memory to zero.
process = (process_info_t *)calloc(l, sizeof (process_info_t));
if (process == NULL) {

perror (" [liboptimizer] calloc");

return NULL;
}

// Retrieve absolute path of the binary.
if (get_absolute_path(absolute_path, argv[0]) == NULL) {
perror (" [liboptimizer] get_absolute_path");

goto _failed_abs_path;
}

DBG("absolute_path: %s\n", absolute_path);

// Initialize the fields we already have information about.
process->argc = argc;

process->argv = argv;

process->path = absolute_path;

process->function_name = function_name;

process->is64 = is64bit(process->path);

// Get function offset from function_name.
process->function_offset = get_symbol_address(process->path, process->function_name) ;
if (process->function_offset == 0) {

fprintf(stderr, "[liboptimizer] ERROR: Could not get function offset\n");

goto _failed_func_offset;

¥

// Call the RetDec's script to generate LLVM IR of the function passed as

HEIG-VD | Lucas Elisei

Page 52

liboptimizer

}

int

int

}

Zam
_failed_func_offset:
_failed_abs_path:
_failed_recompilation:
_failed_attach:

// argument.
rc = _recompile_function(process);
if (rc < 0) {
fprintf(stderr, "[liboptimizer] ERROR: Error while recompiling function\n");

goto _failed_recompilation;
}
// Attach the child process.
rc = patcher_attach_process(process);
if (rec < 0) {
fprintf (stderr, "[liboptimizer] ERROR: Error while attaching process\n");

goto _failed_attach;

return process;

not64bit:

free(process);

return NULL;
modify_process(process_info_t *process) {
int rc;

rc = patcher_modify_process(process);

if (re < 0) {

fprintf(stderr, "[liboptimizer] ERROR: Error while modifying process memory\n");

return -1;

}

return O;

execute_process(process_info_t *process, bool wait_for_exit) {
int rc;

rc = patcher_continue_exec(process, wait_for_exit);

if (rc < 0) {

fprintf (stderr, "[liboptimizer] ERROR: Error while continuing process execution\n");

return -1;

}

return O;

#ifdef LIBOPTIMIZER_DEBUG
void print_process_info(process_info_t *process) {

int i;
FILE *fp;
char filename [PATH_MAX];

sprintf (filename, "%s%d.bin", process->function_name, process->is64 7 64 : 32);

fp = fopen(filename, "wb");

DBG("=== Printing process_info_t at 0xJ" PRIXPTR "\n", (uintptr_t)process);
DBG(" path...................: %s\n", process->path);

DBG(" argc...................: %d\n", process->argc);

DBG(" argv...................:");

for (1 = 0; i < process->argc; ++i) {
fprintf (stderr, " Ys", process->argv[il);

}
fprintf (stderr, "\n");
DBG(" is64...................: %hd\n", process->is64);

HEIG-VD | Lucas Elisei

Page 53

153

© 0 N O U A W N

35
36
37
38
39

liboptimizer

DBG(" pid....................: %d\n", process->pid);
DBG(" function_name..........: %s\n", process->function_name) ;
DBG(" function_offset........: Ox%" PRIX64 "\n", process->function_offset);
DBG(" codesegment_address....: 0x)" PRIX64 "\n", process->codesegment_address);
DBG(" freesegment_address....: 0x)" PRIX64 "\n", process->freesegment_address);
DBG(" optimized_function_size: %zu\n", process->optimized_function_size);
DBG(" optimized_function.....: 0x%" PRIXPTR "\n", (uintptr_t)process->optimized_function);
if (process->optimized_function_size > 0) {
DBG(" ||);

for (i = 0; i < process->optimized_function_size; ++i) {
uint8_t byte = process->optimized_function[i];

fputc(byte, fp);
fprintf (stderr, " %02X", byte);

if (4 %8==17)A1
fprintf (stderr, "\n");

DBG(" ||);
}
}
fprintf (stderr, "\n");
}
DBG(" \n\n") ;
fclose(fp);

}
#endif // LIBOPTIMIZER_DEBUG

utils.c

/*
* File: utils.c
*
* Created by: Lucas Elisei <lucas.elisei@heig-vd.ch>

*/

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#include "utils.h"

char *get_absolute_path(char *dest, const char *path) {
char buffer [PATH_MAX];

if (xpath == '/') {
strcpy(buffer, path);
}
else {
if (getcwd(buffer, PATH_MAX) == NULL) {
perror("[liboptimizer] getcwd error");
return NULL;
}
strcat (buffer, "/");
strcat (buffer, path);
}

if (realpath(buffer, dest) == NULL) {
perror("[liboptimizer] realpath error");

return NULL;
}

return dest;

HEIG-VD | Lucas Elisei

Page 54

55
56
57
58
59
60
61
62
63
64
65
66
67
68

liboptimizer

D.6 mmult
mmult.c
/*
* File: mmult.c
*
* Created by: Lucas Elisei <lucas.elisei@heig-vd.ch>

*/

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "mmult.h"
#define FILENAME "/dev/urandom"
void matrix_init_data(matrix_t *m) {
FILE* fp;
size_t i;
fp = fopen(FILENAME, "rb");
if (fp == NULL) {
fprintf(stderr, "Could not open %s\n", FILENAME);

exit (EXIT_FAILURE) ;
}

for (i = 0; i < m—>row * m->col; ++i) {
uint8_t data;

if (fread(&data, sizeof(uint8_t), 1, fp) !'= 1) {
fprintf (stderr, "fread error\n");

fclose(fp);

exit (EXIT_FAILURE);

}

m->datal[i] = data 7 8;
}
fclose(fp);

}

matrix_t *matrix_init(size_t row, size_t col) {
matrix_t *m;

m = (matrix_t *)malloc(sizeof (matrix_t));
if (m == NULL) {
fprintf(stderr, "Could not allocate memory\n");

return NULL;
}

m->data = (uint32_t *)malloc(row * col * sizeof(uint32_t));
if (m->data == NULL) {
fprintf (stderr, "Could not allocate memory\n");
free(m);

return NULL;
}

m->col = col;
m->row = row;

return m;

}

int matrix_mult(matrix_t *a, matrix_t *b, matrix_t *res) {
size_t i, j, k;

HEIG-VD | Lucas Elisei

Page 55

© 0 N O U A W N e

liboptimizer

for (i = 0; i < res->row * res->col; ++i) {
res->datali] = 0;

}

for (i = 0; i < a->row; ++i) {
for (j = 0; j < a->col; ++j) {
for (k = 0; k < b->col; ++k) {
res->datali*res->col + j] += a->datal[i*res->col + k]

}
}

return O;

}

void matrix_save(matrix_t #*m, const char *filename) {
size_t i, j;
FILE *fp;

fp = fopen(filename, "w");
if (fp == NULL) {
perror ("fopen()");

return;

}

for (i = 0; i < m—>row; ++i) {
for (j = 0; j < m->col; ++j) {
fprintf(fp, "%3d ", m->datali*m->col + jl);
}
fprintf (fp, "\n");
}

fclose(fp);

* b->datal[k*res->col + jl;

main.c

* File: main.c

* Created by: Lucas Elisei <lucas.elisei@heig-vd.ch>

*/
#define _POSIX_C_SOURCE 199309L

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <untstd.h>

#include "mmult.h"

int main(int argc, char *xargv) {
matrix_t #*ml, *m2, *res;
size_t col, row;

struct timespec start, stop;

if (arge !'= 3) {
fprintf (stdout, "usage: %s <row> <col>\n", argv[0]);

return EXIT_FAILURE;

row = (size_t)atoi(argv[i]l);
col = (size_t)atoi(argv[2]);

mi matrix_init(row, col);
m2 = matrix_init(col, row);

HEIG-VD | Lucas Elisei

Page 56

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

liboptimizer

res = matrix_init(row, row);

matrix_init_data(m1);
matrix_init_data(m2);

matrix_save(ml, "ml.mat");
matrix_save(m2, "m2.mat");

if (clock_gettime (CLOCK_REALTIME, &start) == -1) {
perror("clock_gettime()");
exit (EXIT_FAILURE);

}

matrix_mult(ml, m2, res);

if (clock_gettime (CLOCK_REALTIME, &stop) == -1) {
perror("clock_gettime()");
exit (EXIT_FAILURE) ;

}

printf("Elapsed time for matrix multiplication (%zux’zu): %lus %luns\n",
row, col, (stop.tv_sec - start.tv_sec),
(stop.tv_nsec - start.tv_nsec));

matrix_save(res, "res.mat");

return EXIT_SUCCESS;

Machine code of non-optimized 32-bit matrix_mult function

00001424 <matrix_mult>:

1424: 55 push %ebp

1425: 89 e5 mov %esp, hebp

1427: 56 push Yesi

1428: 53 push Jebx

1429: 83 ec 10 sub $0x10, %esp

142c: e8 eb 01 00 00 call 161c <__x86.get_pc_thunk.ax>
1431: 05 cf 2b 00 00 add $0x2bcf, %eax

1436: c7 45 £4 00 00 00 00 movl $0x0, -0xc (%ebp)

143d: eb 18 jmp 1457 <matrix_mult+0x33>
143f: 8b 45 10 mov 0x10 (%ebp) , %heax

1442: 8b 40 08 mov 0x8 (%eax) ,%eax

1445: 8b 55 f4 mov -0xc (%ebp) , %hedx

1448: cl e2 02 shl $0x2, %edx

144b: 01 do add %hedx, heax

1444: c7 00 00 00 00 00 movl $0x0, (%eax)

1453: 83 45 f4 01 addl $0x1,-0xc (%ebp)

1457: 8b 45 10 mov 0x10 (%ebp) , %heax

145a: 8b 10 mov (%eax) ,%edx

145c: 8b 45 10 mov 0x10 (%ebp) , %heax

145f : 8b 40 04 mov 0x4 (%eax) , %heax

1462: Of af c2 imul Y%edx , heax

1465: 39 45 f4 cmp %eax,-0xc (%ebp)

1468: 72 db5 jb 143f <matrix_mult+0x1b>
146a: c7 45 £4 00 00 00 00 movl $0x0, -0xc (%ebp)

1471: e9 bf 00 00 00 jmp 1635 <matrix_mult+0x111>
1476: c7 45 £f0 00 00 00 0O movl $0x0,-0x10 (%ebp)

147d: e9 a0 00 00 00 jmp 1622 <matrix_mult+Oxfe>
1482: c7 45 ec 00 00 00 00 movl $0x0,-0x14 (%ebp)

1489: e9 81 00 00 00 jmp 150f <matrix_mult+Oxeb>
148e: 8b 45 10 mov 0x10 (%ebp) , heax

1491: 8b 50 08 mov 0x8 (%eax) ,%edx

1494: 8b 45 10 mov 0x10(%ebp) , heax

1497: 8b 40 04 mov 0x4 (%eax) ,%eax

149a: Of af 45 f4 imul -0xc (%ebp) ,%heax

149e: 89 ci1 mov Yeax,hecx

14a0: 8b 45 fO mov -0x10 (%ebp) , heax

14a3: 01 c8 add hecx, heax

14a5: cl e0 02 shl $0x2, %eax

14a8: 01 do add %hedx, heax

14aa: 8b 08 mov (heax) ,%ecx

HEIG-VD | Lucas Elisei

Page 57

51

85
86
87
88
89
90
91
92
93
94
95
96
97

liboptimizer

14ac:
14af:
14b2:
14b5:
14b8:
14bc:
14be:
14c1:
14c3:
14c6:
14c8:
14ca:
14cd:
14d0:
14d3:
14d6:
14da:
14dc:
14df:
14el:
14e4:
14e6:
14e8:
14eb:
14ee:
14f1:
14f4:
14£7:
14fb:
14f4:
1500:
1502:
1505:
1507:
1509:
150b:
1501f:
1512:
1515:
1518:
151e:
1522:
1525:
1528:
152b:
1531:
1535:
1538:
153a:
153d:
1543:
1548:
154Db:
154c:
1544d:
154e:

8b
8b
8b
8b
of
89
8b
01
cl
01
8b
8b
8b
8b
8b
of
89
8b
01
cl
01
8b
of
8b
8b
8b
8b
of
89
8b
01
cl
01
01
89
83
8b
8b
39
of
83
8b
8b
39
of
83
8b
8b
39
of
b8
83
5b
Se
5d
c3

45
50
45
40
af
c3
45
ds
e0
do
10
45
58
45
40
af
c6
45
0
e0
ds
00
af
45
58
45
40
af
c6
45
f0
e0
ds
ca
10
45
45
40
45
82
45
45
40
45
82
45
45
00
45
82
00
c4

08
08
10
04
45

ec

02

Oc
08
10
04
45

f0

02

do
10
08
10
04
45

£0

02

ec
Oc
04
ec
70
f0
08
04
f0
51
f4
08

4
33
00
10

f4

ec

f4

01

ff
01

ff
01

ff
00

ff ff

ff ff

ff ff
00

mov
mov
mov
mov
imul
mov
mov
add
shl
add
mov
mov
mov
mov
mov
imul
mov
mov
add
shl
add
mov
imul
mov
mov
mov
mov
imul
mov
mov
add
shl
add
add
mov
addl
mov
mov
cmp
jb
addl
mov
mov
cmp
jb
addl
mov
mov
cmp
jb
mov
add
pop
pop
pop
ret

0x8(%ebp) , heax
0x8 (%eax) ,%edx
0x10(%ebp) , heax
0x4 (Yheax) ,%heax
-0xc (%ebp) ,%heax
%heax, hebx

-0x14 (%ebp) , heax
%ebx , heax

$0x2, eax
Yedx , heax

(%eax) ,%hedx

0xc (%ebp) , heax
0x8 (%eax) ,%ebx
0x10(%ebp) , heax
0x4 (%eax) ,%heax
-0x14 (%ebp) , heax
%heax,hesi
-0x10(%ebp) , heax
Yhesi,heax

$0x2, heax
%ebx , heax

(%eax) ,heax
Yheax,hedx
0x10(%ebp) , heax
0x8(%eax) , %ebx
0x10(%ebp) , heax
0x4 (Yheax) ,%heax
-0xc (%ebp) ,%heax
%heax, hesi

-0x10 (%ebp) , heax
%hesi,heax

$0x2, eax
%ebx , %eax

Yhecx, hedx

%hedx, (eax)
$0x1,-0x14 (%ebp)
Oxc (%ebp) ,heax
0x4 (%eax) ,%heax
%eax,-0x14 (%ebp)
148e <matrix_mult+0x6a>
$0x1,-0x10 (%ebp)
0x8 (%ebp) , heax
0x4 (Yheax) ,%heax
%heax,-0x10 (%ebp)
1482 <matrix_mult+0xb5e>
$0x1, -0xc (%ebp)
0x8 (%ebp) , heax
(%heax) ,%eax
%heax,-0xc (Yebp)
1476 <matrix_mult+0x52>
$0x0, eax

$0x10, %esp

%ebx

%hesi

%ebp

Machine code of optimized 32-bit matrix_mult function

00000000 <.data>:

0: 55
1: 53
2 57
3: 56
4: 83
7: 8b
b 8b
f: 89
13: 8b
16: 89

ec
4c
44
44
04
44

18
24
24
24
24
24

34
04
Oc

14

pus
pus
pus
pus
sub
mov
mov
mov
mov
mov

h
h
h
h

%ebp

%hebx

Yhedi

%esi

$0x18,%esp

0x34 (%esp) , hecx
0x4 (%esp) , heax
%heax,0xc (%esp)
(%esp) ,heax
%heax,0x14 (%esp)

HEIG-VD | Lucas Elisei

Page 58

50

57

liboptimizer

la: 8b 41 04
1d: 0f af 01
20: 85 c0

22: 74 24

24: 31 cO

26: 31 f6

28: 90

29: 90

2a: 90

2b: 90

2c: 90

2d: 90

2e: 90

2f: 90

30: 8b 79 08
33: c7 04 38 00 00 00 00
3a: 46

3b: 8b 79 04
3e: 0f af 39
41: 83 c0 04
44: 39 fe

46: 72 e8

48: 8b 4c 24 2c
4c: 8b 19

de: 85 db

50: 0f 84 e5 00 00 00
56: 8b 54 24 30
ba 8b 69 04
5d: 31 f6

5f: 89 e8

61: 90

62: 90

63: 90

64: 90

65: 90

66: 90

67: 90

68: 90

69: 90

6a: 90

6b: 90

6c: 90

6d: 90

6e 90

6f: 90

70: 85 c0

72: 0f 84 b8 00 00 00
78: 8b 42 04
Tb: 31 ff

7d: 89 74 24 10
81: 90

82: 90

83: 90

84: 90

85: 90

86: 90

87: 90

88: 90

89: 90

8a 90

8b: 90

8c: 90

8d: 90

8e: 90

8f: 90

90: 85 c0

92: b8 00 00 00 00
97: 74 7f

99: 31 ed

9b: 89 7c 24 08
9f: 90

a0: 8b 44 24 34
ad: 89 c2

mov
imul
test
je
xor
xor
nop
nop
nop
nop
nop
nop
nop
nop
mov
movl
inc
mov
imul
add
cmp
jb
mov
mov
test
je
mov
mov
xor
mov
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
test
je
mov
xor
mov
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
test
mov
je
xor
mov
nop
mov
mov

0x4 (Yhecx) , %eax
(%ecx) ,%eax
Yeax,heax

0x48

Yeax, heax
Yhesi,%esi

0x8 (%ecx) ,%edi
$0x0, (Yeax,%hedi, 1)
%esi

0x4 (%hecx) ,%edi
(%ecx) ,hedi
$0x4, jeax
Yedi,hesi

0x30

0x2c (%esp) , hecx
(hecx) ,hebx
%ebx , hebx

0x13b

0x30 (%esp) ,hedx
0x4 (%ecx) ,%hebp
%hesi,%hesi
%ebp , heax

Yheax, heax
0x130

0x4 (%edx) , %heax
%edi,%edi
%esi,0x10(%esp)

Yeax,heax
$0x0, jeax
0x118
%ebp , %hebp
%edi,0x8 (Yesp)

0x34 (%esp) , heax
Yheax, hedx

HEIG-VD | Lucas Elisei

Page 59

110
111
112
113
114
115
116
117
118
119

132

135

liboptimizer

a6:
a9:
ac:
af:
b3:
b6:
b9:
bc:
bf:
cl:
c4:
c8:
cb:
ce:
d2:
d5:
ds:
dc:
de:
e2:
e6:
e8:
ec:
ef:
£2:
£5:
£8:
fc:
fe:
101:
105:
106:
109:
10b:
10d:
110:
114:
118:
119:
11b:
121:
123:
125:
126:
128:
12e:
130:
132:
133:
135:
13b:
13f:
142:
146:
14a:
14c:
14f:
150:
151:
152:
1563:

8b
8b
of
8b
8d
8b
8b
89
01
8b
8b
8b
89
8b
8b
of
89
01
of
8b
01
8b
8b
89
8b
of
89
01
89
8b
45
8b
39
72
8b
8b
8b
47
39
of
8b
89
46
39
of
eb
31
46
39
of
8b
89
8b
89
31
83
Se
5f
5b
5d
c3

42
52
af
Tc
34
04
71
14
ea
14
5c
73
34
4c
49
af
4c
9
af
74
c2
4c
41
04
49
af
4c
9
14
4c

43
cb
93
69
54
Tc

ef
82
19
e8

de
82
Ob
c0

de
82
44
04
44
44
c0
c4

08
04
a6
24
3a
b0
08
24

96
24
08
24
24
04
cd
24

14
24

24
08
24
04
ce
24

88
24

04

04

24
24

6f

42

35
24
24
24
24

18

08

30

34

04

8e
10

34

04

2c

30
08

ff

ff

ff
14

Oc
04

ff ff

ff ff

ff ff

mov
mov
imul
mov
lea
mov
mov
mov
add
mov
mov
mov
mov
mov
mov
imul
mov
add
imul
mov
add
mov
mov
mov
mov
imul
mov
add
mov
mov
inc
mov
cmp
jb
mov
mov
mov
inc
cmp
jb
mov
mov
inc
cmp
jb
jmp
xor
inc
cmp
jb
mov
mov
mov
mov
xor
add
pop
pop
pop
pop
ret

0x8 (%edx) , heax
0x4 (%edx) , %edx
%esi,%edx
0x8(%esp) , %edi
(hedx,%edi, 1) ,%esi
(%eax,%esi,4) ,%eax
0x8 (%ecx) ,%esi
%edx, (hesp)
%ebp, hedx
(%esi,%edx,4) ,%edx
0x30 (%esp) ,%hebx
0x8(%ebx) ,%esi
%esi, (hesp)
0x34 (%esp) ,hecx
0x4 (%ecx) ,hecx
%ebp, hecx
%hecx,0x4 (Yesp)
%edi,hecx
(%esi,%ecx,4) ,%hedx
0x10(%esp) ,hesi
Yheax, hedx

0x34 (%esp) ,hecx
0x8(%ecx) ,%heax
%heax, (fiesp)

0x4 (%ecx) ,%hecx
%esi,%ecx
%hecx,0x4 (%esp)
Yhedi,hecx

%edx, (heax,%hecx,4)
0x2c (%esp) ,hecx
%ebp

0x4 (%ebx) , %heax
%eax , %iebp

0xal

0x4 (%ecx) ,%hebp
0x30 (%esp) , hedx
0x8(%esp) ,%hedi
%hedi

%ebp, hedi

0x90

(%ecx) ,hebx
%ebp, heax

fhesi

Yebx , hesi

0x70

0x13b

%heax,heax

fhesi

%ebx ,%esi

0x70

0x14 (Yesp) ,heax
%heax, (esp)

Oxc (%esp) ,heax
%heax,0x4 (%esp)
Yeax, heax
$0x18,%esp

fhesi

%edi

%ebx

%ebp

HEIG-VD | Lucas Elisei

Page 60

	Introduction
	Project aim and objectives
	Disposition
	Requirements
	Theoretical overview
	Executable and Linkable Format
	Decompilation

	Literature review
	State of the art tools
	Intermediate representations
	Existing tools

	Successful recompilation
	Automatization tool
	Design
	elfparser
	retdec
	jit
	live-patcher
	liboptimizer
	optimizer

	Examples
	Simple addition
	32-bit
	64-bit

	Simple multiplication
	32-bit
	64-bit

	Matrices multiplication
	32-bit
	64-bit

	Conclusion
	Acknowledgements
	References
	Appendices
	Authentication
	Requirements
	Simple decompilation example
	liboptimizer
	elfparser
	retdec
	jit
	live-patcher
	liboptimizer
	mmult

